تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Game Theory
المؤلف:
Ahrens, W
المصدر:
Mathematische Unterhaltungen und Spiele. Leipzig, Germany: Teubner, 1910.
الجزء والصفحة:
...
4-11-2021
2114
Game theory is a branch of mathematics that deals with the analysis of games (i.e., situations involving parties with conflicting interests). In addition to the mathematical elegance and complete "solution" which is possible for simple games, the principles of game theory also find applications to complicated games such as cards, checkers, and chess, as well as real-world problems as diverse as economics, property division, politics, and warfare.
Game theory has two distinct branches: combinatorial game theory and classical game theory.
Combinatorial game theory covers two-player games of perfect knowledge such as go, chess, or checkers. Notably, combinatorial games have no chance element, and players take turns.
In classical game theory, players move, bet, or strategize simultaneously. Both hidden information and chance elements are frequent features in this branch of game theory, which is also a branch of economics.
The Season 1 episode "Dirty Bomb" (2005) of the television crime drama NUMB3RS (as well as a number of other episodes) feature character Charlie's use of game theory as a tool for solving crimes.
REFERENCES:
Ahrens, W. Mathematische Unterhaltungen und Spiele. Leipzig, Germany: Teubner, 1910.
Berlekamp, E. R.; Conway, J. H; and Guy, R. K. Winning Ways for Your Mathematical Plays, Vol. 1: Adding Games, 2nd ed. Wellesley, MA: A K Peters, 2001.
Berlekamp, E. R.; Conway, J. H; and Guy, R. K. Winning Ways for Your Mathematical Plays, Vol. 2: Games in Particular. London: Academic Press, 1982.
Conway, J. H. On Numbers and Games, 2nd ed. Wellesley, MA: A K Peters, 2000.
Dresher, M. The Mathematics of Games of Strategy: Theory and Applications. New York: Dover, 1981.
Eppstein, D. "Combinatorial Game Theory." http://www.ics.uci.edu/~eppstein/cgt/.
Gardner, M. "Game Theory, Guess It, Foxholes." Ch. 3 in Mathematical Magic Show: More Puzzles, Games, Diversions, Illusions and Other Mathematical Sleight-of-Mind from Scientific American. New York: Vintage, pp. 35-49, 1978.
Gardner, R. Games for Business and Economics. New York: Wiley, 1994.
Isaacs, R. Differential Games: A Mathematical Theory with Applications to Warfare and Pursuit, Control and Optimization. New York: Dover, 1999.
Karlin, S. Mathematical Methods and Theory in Games, Programming, and Economics, 2 Vols. Vol. 1: Matrix Games, Programming, and Mathematical Economics. Vol. 2: The Theory of Infinite Games. New York: Dover, 1992.
Kuhn, H. W. (Ed.). Classics in Game Theory. Princeton, NJ: Princeton University Press, 1997.
McKinsey, J. C. C. Introduction to the Theory of Games. New York: McGraw-Hill, 1952.
Mérö, L. Moral Calculations: Game Theory, Logic and Human Frailty. New York: Springer-Verlag, 1998.
Neumann, J. von and Morgenstern, O. Theory of Games and Economic Behavior, 3rd ed. New York: Wiley, 1964.
Packel, E. The Mathematics of Games and Gambling, 2nd ed. Washington, DC: Math. Assoc. Amer., 2006.
Stahl, S. A Gentle Introduction to Game Theory. Providence, RI: Amer. Math. Soc., 1999.
Straffin, P. D. Jr. Game Theory and Strategy. Washington, DC: Math. Assoc. Amer., 1993.
Vajda, S. Mathematical Games and How to Play Them. New York: Routledge, 1992.
Walker, P. "An Outline of the History of Game Theory." http://www.econ.canterbury.ac.nz/personal_pages/paul_walker/gt/hist.htm.
Weisstein, E. W. "Books about Game Theory." http://www.ericweisstein.com/encyclopedias/books/GameTheory.html.
Williams, J. D. The Compleat Strategyst, Being a Primer on the Theory of Games of Strategy. New York: Dover, 1986.