تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Conway Game
المؤلف:
Berlekamp, E. R.; Conway, J. H.; and Guy, R. K
المصدر:
Winning Ways for Your Mathematical Plays. Wellesley, MA: A K Peters, 2004.
الجزء والصفحة:
...
19-10-2021
1463
Conway games were introduced by J. H. Conway in 1976 to provide a formal structure for analyzing games satisfying certain requirements:
1. There are two players, Left and Right ( and
), who move alternately.
2. The first player unable to move loses.
3. Both players have complete information about the state of the game.
4. There is no element of chance.
For example, nim is a Conway game, but chess is not (due to the possibility of draws and stalemate). Note that Conway's "game of life" is (somewhat confusingly) not a Conway game.
A Conway game is either:
1. The zero game, denoted as 0 or {|}" src="https://mathworld.wolfram.com/images/equations/ConwayGame/Inline3.gif" style="height:18px; width:19px" />, or
2. An object (an ordered pair) of the form {G^L|G^R}" src="https://mathworld.wolfram.com/images/equations/ConwayGame/Inline4.gif" style="height:21px; width:53px" />, where
and
are sets of Conway games.
The elements of and
are called the Left and Right options respectively, and are the moves available to Left and Right. For example, in the game
{{a,b}|{}}" src="https://mathworld.wolfram.com/images/equations/ConwayGame/Inline9.gif" style="height:18px; width:61px" />, if it is
's move, he may move to
or
, whereas if it is
's move, he has no options and loses immediately.
A game in which both players have the same moves in every position is called an impartial game. A game in which players have different options is a partisan game. A game with only finitely many positions is called a short game. A game in which it is possible to return to the starting position is called loopy.
Some simple games which occur frequently in the theory have abbreviated names:
1. {0|0}" src="https://mathworld.wolfram.com/images/equations/ConwayGame/Inline14.gif" style="height:18px; width:62px" />
2. {0|}" src="https://mathworld.wolfram.com/images/equations/ConwayGame/Inline15.gif" style="height:18px; width:47px" />
3. {n-1|}" src="https://mathworld.wolfram.com/images/equations/ConwayGame/Inline16.gif" style="height:18px; width:69px" /> for any positive integer
4. {0|1}" src="https://mathworld.wolfram.com/images/equations/ConwayGame/Inline18.gif" style="height:18px; width:72px" />
5. {0|*}" src="https://mathworld.wolfram.com/images/equations/ConwayGame/Inline19.gif" style="height:18px; width:63px" />
6. {*|0}" src="https://mathworld.wolfram.com/images/equations/ConwayGame/Inline20.gif" style="height:18px; width:65px" />
A recursive construction procedure can be used to generate all short games. Steps in the procedure are called days, and the set of games first appearing (born) on day is denoted
. The zeroth day is
{0}" src="https://mathworld.wolfram.com/images/equations/ConwayGame/Inline23.gif" style="height:15px; width:62px" />. Subsequent days are
{{L|R}}" src="https://mathworld.wolfram.com/images/equations/ConwayGame/Inline24.gif" style="height:18px; width:103px" /> where
and
range over all elements of
. Day 1 has four elements,
{0,*,1,-1}" src="https://mathworld.wolfram.com/images/equations/ConwayGame/Inline28.gif" style="height:15px; width:121px" />, and the number of elements in
for
, 1, ... are 1, 4, 22, 1474, ... (OEIS A065401). D. Hickerson and R. Li found
in 1974, but no other terms are known.
The following pairifaction table shows in terms of their left and right options:
![]() |
![]() |
0 | 1 | ||
1 | ![]() |
||||
0 | ![]() |
![]() |
![]() |
![]() |
|
![]() |
0 | ![]() |
![]() |
0 | |
![]() |
0 | ![]() |
![]() |
![]() |
0 |
![]() |
![]() |
![]() |
![]() |
The set of all Conway games forms an Abelian group with the operations:
{(G^L+H) union (G+H^L)|(G^R+H) union (G+H^R)}" src="https://mathworld.wolfram.com/images/equations/ConwayGame/Inline60.gif" style="height:21px; width:317px" />
{-G^R|-G^L}" src="https://mathworld.wolfram.com/images/equations/ConwayGame/Inline61.gif" style="height:21px; width:110px" />
Here, expressions of the form mean the set of all expressions of the form
with
in
.
The set of all Conway games forms a partial order with respect to the comparison operations:
1. . If the second player to move in the game
can win (
and
are equal).
2. . If the first player to move in the game
can win (
and
are fuzzy).
3. . If Left can win the game
whether he plays first or not (
is greater than
).
4. . If Right can win the game
whether he plays first or not (
is less than
).
We have denoted by
.
will mean either
or
, and similarly for
. For example, we have
,
, and
.
Each is a partial order with respect to the relation
.
A basic theorem shows that all games may be put in a canonical form, which allows an easy test for equality. The canonical form depends on two types of simplification:
1. Removal of a dominated option: if {{L_1,L_2,...}|G^R}" src="https://mathworld.wolfram.com/images/equations/ConwayGame/Inline93.gif" style="height:21px; width:131px" /> and
, then
{{L_2,...}|G^R}" src="https://mathworld.wolfram.com/images/equations/ConwayGame/Inline95.gif" style="height:21px; width:109px" />; and if
{G^L|{R_1,R_2,...}}" src="https://mathworld.wolfram.com/images/equations/ConwayGame/Inline96.gif" style="height:21px; width:133px" /> and
, then
{G^L|{R_2,...}}" src="https://mathworld.wolfram.com/images/equations/ConwayGame/Inline98.gif" style="height:21px; width:110px" />.
2. Replacement of reversible moves: if {{{A^L|{A^(R_1),A^(R_2),...}},G^(L_2),...}|G^R}" src="https://mathworld.wolfram.com/images/equations/ConwayGame/Inline99.gif" style="height:21px; width:245px" />, and
, then
{{{A^(R_1^L)},G^(L_2),...}|G^R}" src="https://mathworld.wolfram.com/images/equations/ConwayGame/Inline101.gif" style="height:27px; width:170px" />.
is said to be in canonical form if it has no dominated options or reversible moves. If
and
are both in canonical form, they both have the same sets of left and right options and so are equal.
REFERENCES:
Berlekamp, E. R.; Conway, J. H.; and Guy, R. K. Winning Ways for Your Mathematical Plays. Wellesley, MA: A K Peters, 2004.
Calistrate, D.; Paulhus, M; and Wolfe, D. "On the Lattice Structure of Finite Games." In More Games of No Chance (Ed. R. J. Nowakowski). Cambridge, England: Cambridge University Press, pp. 25-30, 2002.
Conway, J. H. On Numbers and Games. Wellesley, MA: A K Peters, 2000.
Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 283-284, 1996.
Fraser, W.; Hirshberg, S.; and Wolfe, D. "The Structure of the Distributive Lattice of Games Born by Day ." http://homepages.gac.edu/~wolfe/papers/dayn/structure.pdf.
Gonshor, H. An Introduction to Surreal Numbers. Cambridge, England: Cambridge University Press, 1986.
Knuth, D. Surreal Numbers: How Two Ex-Students Turned on to Pure Mathematics and Found Total Happiness. Reading, MA: Addison-Wesley, 1974. http://www-cs-faculty.stanford.edu/~knuth/sn.html.
Schleicher, D. and Stoll, M. "An Introduction to Conway's Numbers and Games." http://arxiv.org/abs/math.CO/0410026.
Siegel, A. N. "Loopy Games and Computation." Ph.D. thesis. Berkeley, CA: University of California Berkeley, 2005.
Sloane, N. J. A. Sequence A065401 in "The On-Line Encyclopedia of Integer Sequences."