1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : الرياضيات التطبيقية :

Conway Game

المؤلف:  Berlekamp, E. R.; Conway, J. H.; and Guy, R. K

المصدر:  Winning Ways for Your Mathematical Plays. Wellesley, MA: A K Peters, 2004.

الجزء والصفحة:  ...

19-10-2021

1463

Conway Game

Conway games were introduced by J. H. Conway in 1976 to provide a formal structure for analyzing games satisfying certain requirements:

1. There are two players, Left and Right (L and R), who move alternately.

2. The first player unable to move loses.

3. Both players have complete information about the state of the game.

4. There is no element of chance.

For example, nim is a Conway game, but chess is not (due to the possibility of draws and stalemate). Note that Conway's "game of life" is (somewhat confusingly) not a Conway game.

A Conway game is either:

1. The zero game, denoted as 0 or <span style={|}" src="https://mathworld.wolfram.com/images/equations/ConwayGame/Inline3.gif" style="height:18px; width:19px" />, or

2. An object (an ordered pair) of the form <span style={G^L|G^R}" src="https://mathworld.wolfram.com/images/equations/ConwayGame/Inline4.gif" style="height:21px; width:53px" />, where G^L and G^R are sets of Conway games.

The elements of G^L and G^R are called the Left and Right options respectively, and are the moves available to Left and Right. For example, in the game <span style={{a,b}|{}}" src="https://mathworld.wolfram.com/images/equations/ConwayGame/Inline9.gif" style="height:18px; width:61px" />, if it is L's move, he may move to a or b, whereas if it is R's move, he has no options and loses immediately.

A game in which both players have the same moves in every position is called an impartial game. A game in which players have different options is a partisan game. A game with only finitely many positions is called a short game. A game in which it is possible to return to the starting position is called loopy.

Some simple games which occur frequently in the theory have abbreviated names:

1. *=<span style={0|0}" src="https://mathworld.wolfram.com/images/equations/ConwayGame/Inline14.gif" style="height:18px; width:62px" />

2. 1=<span style={0|}" src="https://mathworld.wolfram.com/images/equations/ConwayGame/Inline15.gif" style="height:18px; width:47px" />

3. n=<span style={n-1|}" src="https://mathworld.wolfram.com/images/equations/ConwayGame/Inline16.gif" style="height:18px; width:69px" /> for any positive integer n

4. 1/2=<span style={0|1}" src="https://mathworld.wolfram.com/images/equations/ConwayGame/Inline18.gif" style="height:18px; width:72px" />

5. ^=<span style={0|*}" src="https://mathworld.wolfram.com/images/equations/ConwayGame/Inline19.gif" style="height:18px; width:63px" />

6. v=<span style={*|0}" src="https://mathworld.wolfram.com/images/equations/ConwayGame/Inline20.gif" style="height:18px; width:65px" />

A recursive construction procedure can be used to generate all short games. Steps in the procedure are called days, and the set of games first appearing (born) on day n is denoted G(n). The zeroth day is G(0)=<span style={0}" src="https://mathworld.wolfram.com/images/equations/ConwayGame/Inline23.gif" style="height:15px; width:62px" />. Subsequent days are G(n)= union <span style={{L|R}}" src="https://mathworld.wolfram.com/images/equations/ConwayGame/Inline24.gif" style="height:18px; width:103px" /> where L and R range over all elements of G(n-1). Day 1 has four elements, G(1)=<span style={0,*,1,-1}" src="https://mathworld.wolfram.com/images/equations/ConwayGame/Inline28.gif" style="height:15px; width:121px" />, and the number of elements in G(n) for n=0, 1, ... are 1, 4, 22, 1474, ... (OEIS A065401). D. Hickerson and R. Li found G(3) in 1974, but no other terms are known.

The following pairifaction table shows G(2) in terms of their left and right options:

  * <span style={*,0}" src="https://mathworld.wolfram.com/images/equations/ConwayGame/Inline34.gif" style="height:15px; width:36px" /> -1 0 1
1 <span style={1|*}" src="https://mathworld.wolfram.com/images/equations/ConwayGame/Inline36.gif" style="height:18px; width:36px" /> <span style={1|{0,*}}" src="https://mathworld.wolfram.com/images/equations/ConwayGame/Inline37.gif" style="height:18px; width:60px" /> <span style={1|-1}" src="https://mathworld.wolfram.com/images/equations/ConwayGame/Inline38.gif" style="height:18px; width:43px" /> <span style={1|0}" src="https://mathworld.wolfram.com/images/equations/ConwayGame/Inline39.gif" style="height:18px; width:33px" /> 1*
0 ^ v* <span style={0|-1}" src="https://mathworld.wolfram.com/images/equations/ConwayGame/Inline43.gif" style="height:18px; width:43px" /> * 1/2
* 0 v <span style={*|-1}" src="https://mathworld.wolfram.com/images/equations/ConwayGame/Inline48.gif" style="height:18px; width:48px" /> v 0
-1 0 -1/2 -1* -1/2 0
<span style={*,0}" src="https://mathworld.wolfram.com/images/equations/ConwayGame/Inline54.gif" style="height:15px; width:36px" /> ^ *2 <span style={{0,*}|-1}" src="https://mathworld.wolfram.com/images/equations/ConwayGame/Inline57.gif" style="height:18px; width:70px" /> ^* 1/2

The set of all Conway games forms an Abelian group with the operations:

G+H=<span style={(G^L+H) union (G+H^L)|(G^R+H) union (G+H^R)}" src="https://mathworld.wolfram.com/images/equations/ConwayGame/Inline60.gif" style="height:21px; width:317px" />

-G=<span style={-G^R|-G^L}" src="https://mathworld.wolfram.com/images/equations/ConwayGame/Inline61.gif" style="height:21px; width:110px" />

Here, expressions of the form G^L+H mean the set of all expressions of the form g+H with g in G^L.

The set of all Conway games forms a partial order with respect to the comparison operations:

1. G=H. If the second player to move in the game G-H can win (G and H are equal).

2. G||H. If the first player to move in the game G-H can win (G and H are fuzzy).

3. G>H. If Left can win the game G-H whether he plays first or not (G is greater than H).

4. G<H. If Right can win the game G-H whether he plays first or not (G is less than H).

We have denoted G+(-H) by G-HG>=H will mean either G=H or G>H, and similarly for <=. For example, we have 1>0*=*, and *||0.

Each G(n) is a partial order with respect to the relation <.

A basic theorem shows that all games may be put in a canonical form, which allows an easy test for equality. The canonical form depends on two types of simplification:

1. Removal of a dominated option: if G=<span style={{L_1,L_2,...}|G^R}" src="https://mathworld.wolfram.com/images/equations/ConwayGame/Inline93.gif" style="height:21px; width:131px" /> and L_2>=L_1, then G=<span style={{L_2,...}|G^R}" src="https://mathworld.wolfram.com/images/equations/ConwayGame/Inline95.gif" style="height:21px; width:109px" />; and if G=<span style={G^L|{R_1,R_2,...}}" src="https://mathworld.wolfram.com/images/equations/ConwayGame/Inline96.gif" style="height:21px; width:133px" /> and R_1>=R_2, then G=<span style={G^L|{R_2,...}}" src="https://mathworld.wolfram.com/images/equations/ConwayGame/Inline98.gif" style="height:21px; width:110px" />.

2. Replacement of reversible moves: if G=<span style={{{A^L|{A^(R_1),A^(R_2),...}},G^(L_2),...}|G^R}" src="https://mathworld.wolfram.com/images/equations/ConwayGame/Inline99.gif" style="height:21px; width:245px" />, and A^(R_1)<=G, then G=<span style={{{A^(R_1^L)},G^(L_2),...}|G^R}" src="https://mathworld.wolfram.com/images/equations/ConwayGame/Inline101.gif" style="height:27px; width:170px" />.

G is said to be in canonical form if it has no dominated options or reversible moves. If G and H are both in canonical form, they both have the same sets of left and right options and so are equal.


REFERENCES:

Berlekamp, E. R.; Conway, J. H.; and Guy, R. K. Winning Ways for Your Mathematical Plays. Wellesley, MA: A K Peters, 2004.

Calistrate, D.; Paulhus, M; and Wolfe, D. "On the Lattice Structure of Finite Games." In More Games of No Chance (Ed. R. J. Nowakowski). Cambridge, England: Cambridge University Press, pp. 25-30, 2002.

Conway, J. H. On Numbers and Games. Wellesley, MA: A K Peters, 2000.

Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 283-284, 1996.

Fraser, W.; Hirshberg, S.; and Wolfe, D. "The Structure of the Distributive Lattice of Games Born by Day n." http://homepages.gac.edu/~wolfe/papers/dayn/structure.pdf.

Gonshor, H. An Introduction to Surreal Numbers. Cambridge, England: Cambridge University Press, 1986.

Knuth, D. Surreal Numbers: How Two Ex-Students Turned on to Pure Mathematics and Found Total Happiness. Reading, MA: Addison-Wesley, 1974. http://www-cs-faculty.stanford.edu/~knuth/sn.html.

Schleicher, D. and Stoll, M. "An Introduction to Conway's Numbers and Games." http://arxiv.org/abs/math.CO/0410026.

Siegel, A. N. "Loopy Games and Computation." Ph.D. thesis. Berkeley, CA: University of California Berkeley, 2005.

Sloane, N. J. A. Sequence A065401 in "The On-Line Encyclopedia of Integer Sequences."

EN

تصفح الموقع بالشكل العمودي