

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Ternary Diagram
المؤلف:
Bogomolny, A.
المصدر:
"Barycentric Coordinates, Three Jugs Application." Interactive Mathematics Miscellany and Puzzles. http://www.cut-the-knot.org/triangle/glasses.shtml.
الجزء والصفحة:
...
3-10-2021
1636
Ternary Diagram

A ternary diagram is a triangular diagram which displays the proportion of three variables that sum to a constant and which does so using barycentric coordinates. The coordinate axes of such a diagram are shown in the figure above, where each of the x-, y-, and z-axes are scaled so that
, and where the grid lines denote the values
,
. In most instances, ternary plots are drawn on equilateral triangles as in the figure above, though it is not uncommon for certain scenarios to be better graphed on right triangular diagrams as well (West 2013).
Ternary diagrams are sometimes called ternary plots, triangle plots, ternary graphs, simplex plots, and de Finetti diagrams, though the latter term is usually reserved for a specific family of ternary diagrams commonly studied in population genetics. Such diagrams are encountered often in the study of phase equilibria and appear somewhat often throughout a number of physical sciences.
| point | coordinates ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
For convenience, there are a few "base points" plotted on the coordinate axes in the first figure. Among these are the barycenter
, as well as nine other points whose coordinates are given in the table above. Note that the points labeled
,
, and
in the diagram refer to 100%
, 100%
, and 100% C, respectively, as elaborated upon in the discussion that follows.

At first glance, it may appear as if the coordinates of points plotted on ternary graphs are chosen at random when, in fact, there are a number of equivalent ways to compute the ternary coordinates of a two-dimensional point
. The most visually intuitive way is to obtain them graphically, which can be done as illustrated in the figure above. First, draw the segments
,
, and
where here,
,
, and
, respectively, are the points on the segments
,
, and
, respectively, that are the intersections of those segments with the rays through
and beginning at
,
, and
, respectively. Upon doing so, one gets the relations for the
-,
-, and
-coordinates--denoted
,
, and
, respectively, to indicate that, in practice, these coordinates typically denote a weighted percentage of components
,
, and
--by way of the relations
![]() |
(1) |
![]() |
(2) |
and
![]() |
(3) |
Here,
denotes the Euclidean length of a segment
.

As shown in the figure above, a somewhat different geometric construction can be used to compute the ternary coordinates of a point
. Using this technique, one obtains the percentage of each component
,
, and
by drawing
,
, and
, and then by constructing segments
,
, and
through
and parallel to sides
,
, and
, respectively. In this case, the percentage of
is equal to the length
, while the percentage of
equals
and the percentage of
equals
(West 2013). Using this method, it is often beneficial to draw triangular grid lines as in the first figure above.
A less-visual, more algebraic way to compute the ternary coordinates of a point
is to first consider the stereographic projection of the triple
as a point on the standard 2-simplex in
. Using this method, one identifies 100% of components
,
, and
, respectively, with the coordinates
,
, and
, respectively, and performs a natural stereographic projection from
to
by isometrically rotating the three coordinate axes. Doing so yields what appears to be an equilateral triangle in
with 100%
at
, 100%
at
, and 100%
at
![]() |
(4) |
The result is that the Cartesian ternary coordinates assigned to an arbitrary triple
,
, have the form
![]() |
(5) |
The representation of data as a ternary diagram has some benefit. In addition to the obvious benefit of presenting three-variable data in a two-dimensional plot, the use of the triangular axes can serve to quickly represent certain phenomena. For example, in the first figure, the grid lines parallel to, e.g., segment
represent the points for which %
is constant. Similarly, in the second figure, segments including either
,
, or
represent data for which the ratio of the of the other two components is constant; for example, the ratio
is fixed along segment
in the second figure (Cornish).
REFERENCES:
Bogomolny, A. "Barycentric Coordinates, Three Jugs Application." Interactive Mathematics Miscellany and Puzzles. http://www.cut-the-knot.org/triangle/glasses.shtml.
Cornish, L. "Ternary Phase Diagrams." http://sig.ias.edu/files/Ternary%20Phase%20Diagrams.pdf.
Vaughn, W. "Ternary Plots." 2010. http://wvaughan.org/ternaryplots.html.
West, D. Ternary Equilibrium Diagrams, 2nd ed. New York: Springer, 2013.
الاكثر قراءة في الرياضيات التطبيقية
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية

























قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)