

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Apollonian Gasket
المؤلف:
Andrade, J. S. Jr.; Herrmann, H. J.; Andrade, R. F. S.; 2 and da Silva, L. R.
المصدر:
"Apollonian Networks: Simultaneously Scale-Free, Small World, Euclidean, Space Filling, and with Matching Graphs." Phys. Rev. Lett. 94
الجزء والصفحة:
...
12-9-2021
2931
Apollonian Gasket

Consider three mutually tangent circles, and draw their inner Soddy circle. Then draw the inner Soddy circles of this circle with each pair of the original three, and continue iteratively. The steps in the process are illustrated above (Trott 2004, pp. 34-35).

An animation illustrating the construction of the gasket is shown above.
The points which are never inside a circle form a set of measure 0 having fractal dimension approximately 1.3058 (Mandelbrot 1983, p. 172). The Apollonian gasket corresponds to a limit set that is invariant under a Kleinian group (Wolfram 2002, p. 986).

The Apollonian gasket can also be generalized to three dimensions (Boyd 1973, Andrade et al. 2005), as illustrated above. A graph obtained by connecting the centers of touching spheres in a three-dimensional Apollonian gasket by edges is known as an Apollonian network.
REFERENCES:
Andrade, J. S. Jr.; Herrmann, H. J.; Andrade, R. F. S.; 2 and da Silva, L. R. "Apollonian Networks: Simultaneously Scale-Free, Small World, Euclidean, Space Filling, and with Matching Graphs." Phys. Rev. Lett. 94, 01870-1-4, 2005.
Boyd, D. W. "Improved Bounds for the Disk Packing Constants." Aeq. Math. 9, 99-106, 1973.
Boyd, D. W. "The Residual Set Dimension of the Apollonian Packing." Mathematika 20, 170-174, 1973.
Boyd, D. W. "The Osculatory Packing of a Three Dimensional Sphere." Canad. J. Math. 25, 303-322, 1973.
Kasner, E. and Supnick, F. "The Apollonian Packing of Circles." Proc. Nat. Acad. Sci. USA 29, 378-384, 1943.
Mandelbrot, B. B. The Fractal Geometry of Nature. New York: W. H. Freeman, pp. 169-172, 1983.
Trott, M. The Mathematica GuideBook for Programming. New York: Springer-Verlag, 2004. http://www.mathematicaguidebooks.org/.
Wells, D. The Penguin Dictionary of Curious and Interesting Geometry. London: Penguin, pp. 3-4, 1991.
Wolfram, S. A New Kind of Science. Champaign, IL: Wolfram Media, p. 986, 2002.
الاكثر قراءة في الرياضيات التطبيقية
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية

قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)