تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Gingerbreadman Map
المؤلف:
Devaney, R. L.
المصدر:
"A Piecewise Linear Model for the Zones of Instability of an Area Preserving Map." Physica D 10
الجزء والصفحة:
...
31-8-2021
1704
A two-dimensional piecewise linear map defined by
![]() |
![]() |
![]() |
(1) |
![]() |
![]() |
![]() |
(2) |
The map is chaotic in the filled region above and stable in the six hexagonal regions. Each point in the interior hexagon defined by the vertices (0, 0), (1, 0), (2, 1), (2, 2), (1, 2), and (0, 1) has an orbit with period six (except the point (1, 1), which has period 1). Orbits in the other five hexagonal regions circulate from one to the other. There is a unique orbit of period five, with all others having period 30. The points having orbits of period five are (, 3), (
,
), (3,
), (5, 3), and (3, 5), indicated in the above figure by the black line. However, there are infinitely many distinct periodic orbits which have an arbitrarily long period.
REFERENCES:
Devaney, R. L. "A Piecewise Linear Model for the Zones of Instability of an Area Preserving Map." Physica D 10, 387-393, 1984.
Devaney, R. L. "The Gingerbreadman." Algorithm 3, 15-16, Jan. 1992.
Dr. Mu. "Cowculations: Gingerbread Man." Quantum, pp. 55-57, January/February 1998.
Peitgen, H.-O. and Saupe, D. (Eds.). "A Chaotic Gingerbreadman." §3.2.3 in The Science of Fractal Images. New York: Springer-Verlag, pp. 149-150, 1988.