 
					
					
						Topological Spaces-Continuous Functions between Topological Spaces					
				 
				
					
						 المؤلف:  
						David R. Wilkins
						 المؤلف:  
						David R. Wilkins					
					
						 المصدر:  
						Algebraic Topology
						 المصدر:  
						Algebraic Topology 					
					
						 الجزء والصفحة:  
						6
						 الجزء والصفحة:  
						6					
					
					
						 6-7-2017
						6-7-2017
					
					
						 1932
						1932					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Definition: A function f: X → Y from a topological space X to a topological space Y is said to be continuous if  f−1 (V ) is an open set in X for every open set V in Y , where
                                        f−1 (V ) ≡ {x ∈ X : f(x) ∈ V }.
A continuous function from X to Y is often referred to as a map from X to Y .
Lemma 1.5 Let X, Y and Z be topological spaces, and let f: X → Y and g: Y → Z be continuous functions. Then the composition g ◦ f: X → Z of the functions f and g is continuous.
Proof Let V be an open set in Z. Then g−1 (V ) is open in Y (since g iscontinuous), and hence f−1 (g−1 (V )) is open in X (since f is continuous).
But f−1 (g−1 (V )) = (g ◦ f) −1
(V ). Thus the composition function g ◦ f iscontinuous.
Lemma 1.6 Let X and Y be topological spaces, and let f: X → Y be afunction from X to Y . The function f is continuous if and only if f−1 (G) is closed in X for every closed subset G of Y .
Proof If G is any subset of Y then
                 X  f−1 (G) = f−1 (Y  G)
(i.e., the complement of the preimage of G is the preimage of the complement of G).
The result therefore follows immediately from the definitions of continuity and closed sets.
 
 
 
				
				
					
					 الاكثر قراءة في  التبلوجيا
					 الاكثر قراءة في  التبلوجيا 					
					
				 
				
				
					
					 اخر الاخبار
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة