

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Modules-The Relationship between Bimodules and Left Modules
المؤلف:
David R. Wilkins
المصدر:
Algebraic Topology
الجزء والصفحة:
100-101
4-7-2017
1902
Let R and S be unital rings with multiplicative identity elements 1R and 1S, and let S op be the unital ring (S, +, ×-) whose elements are those of S, whose operation of addition is the same as that defined on S, and whose operation×- of multiplication is defined such that s1×-s2 = s2s1 for all s1, s2 ∈ S.
We can then construct a ring R ⊗Z Sop. The elements of this ring belong to the tensor product of the rings R and Sop over the ring Z of integers, and the operation of addition on R ⊗Z S op is that defined on the tensor product.
The operation of multiplication on R ⊗Z Sop is then defined such that
(r1 ⊗ s1) × (r2 ⊗ s2) = (r1r2) ⊗ (s1×-s2) = (r1r2) ⊗ (s2s1).
Lemma 1.1 Let R and S be unital rings, and let M be an R-S-bimodule.
Then M is a left module over the ring R ⊗ZSop, where
(r1 ⊗ s1) × (r2 ⊗ s2) = (r1r2) ⊗ (s2s1)
for all r1, r2 ∈ R and s1, s2 ∈ S, and where
(r ⊗ s).x = (rx)s = r(xs)
for all r ∈ R, s ∈ S and x ∈ M.
Proof Given any element x of M, let bx: R × S → M be the function defined such that bx(r, s) = (rx)s = r(xs) for all r ∈ R and s ∈ S. Then the function bx is Z-bilinear, and therefore induces a unique Z-module homomorphismβx: R ⊗Z Sop → M, where βx(r ⊗ s) = bx(r, s) = (rx)s for all r ∈ R, s ∈ S and x ∈ M. We define u.x = βx(u) for all u ∈ R ⊗Z Sop and x ∈ M.
Then (u1 + u2).x = u1.x + u2.x for all u1, u2 ∈ R ⊗Z Sop and x ∈ M, because βx is a homomorphism of Abelian groups. Also u.(x1 + x2) = u.x1 + u.x2, because bx1+x2 = bx1 + bx2 and therefore βx1+x2 = βx1 + βx2.
Now
(r1 ⊗ s1).((r2 ⊗ s2).x) = (r1 ⊗ s1).((r2x)s2) = r1(r2(xs2))s1
= ((r1r2)(xs2))s1 = (r1r2)((xs2)s1)
= (r1r2)(x(s2s1) = ((r1r2) ⊗Z (s2s1)).x
= ((r1 ⊗Z s1) × (r2 ⊗Z s2)).x
for all r1, r2 ∈ R, s1, s2 ∈ S and x ∈ M. The bilinearity of the function βx then ensures that u1.(u2.x) = (u1×u2).x for all u1, u2 ∈ R⊗Z Sop and x ∈ M.
Also (1R, 1S).x = x for all x ∈ M, where 1R and 1S denote the identity elements of the rings R and S. We conclude that M is a left R ⊗Z Sop, as required.
Let R and S be unital rings, and let M be a left module over the ring R ⊗Z Sop. Then M can be regarded as an R-S-bimodule, where (rx)s = r(xs) = (r ⊗ s).x for all r ∈ R, s ∈ S and x ∈ M. We conclude therefore that all R-S-bimodules are left modules over the ring R ⊗Z S op, and vica versa. It follows that any general result concerning left modules over unital rings yields a corresponding result concerning bimodules.
الاكثر قراءة في التبلوجيا
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية

قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)