

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Modules -Bimodules
المؤلف:
David R. Wilkins
المصدر:
Algebraic Topology
الجزء والصفحة:
85-86
1-7-2017
1828
Definition Let R and S be unital rings. An R-S-bimodule is an Abelian group M, where elements of M may be multiplied on the left by elements of R, and may also be multiplied on the right by elements of S, and where the following properties are satisfied:
(i) M is a left R-module;
(ii) M is a right S-module;
(iii) (rx)s = r(xs) for all x ∈ M, r ∈ R and s ∈ S.
Example Let K be a field, let m and n be positive integers, and let Mm,n(K) denote the set of m × n matrices with coefficients in the field K. Then Mm,n(K) is an Abelian group with respect to the operation of matrix addition.
The elements of Mm,n(K) may be multiplied on the left by elements of the ring Mm(K) of m × m matrices with coefficients in K; they may also be multiplied on the right by elements of the ring Mn(K) of n × n matrices with coefficients in K; these multiplication operations are the usual ones resulting from matrix multiplication. Moreover (AX)B = A(XB) for all X ∈ Mm,n(K), A ∈ Mm(K) and B ∈ Mn(K). Thus Mm,n(K) is an Mm(K)-Mn(K)-bimodule.
If R is a unital commutative ring then any R-module M may be regarded as an R-R-bimodule, where (rx)s = r(xs) = (rs)x for all x ∈ M and r, s ∈ R.
Definition Let R and S be unital rings, and let M and N be R-S-bimodules.
A function ϕ: M → N from M to N is said to be an R-S-bimodule homomorphism if ϕ(x + y) = ϕ(x) + ϕ(y), ϕ(rx) = rϕ(x) and ϕ(xs) = ϕ(x)s for all x, y ∈ M, r ∈ R and s ∈ S.
الاكثر قراءة في التبلوجيا
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية

قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)