

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Simplicial Homology Groups-The Chain Groups of a Simplicial Complex
المؤلف:
David R. Wilkins
المصدر:
Algebraic Topology
الجزء والصفحة:
...
25-6-2017
1618
Let K be a simplicial complex. For each non-negative integer q, let ∆q(K) be the additive group consisting of all formal sums of the form

where n1, n2, . . . , ns are integers and vr0, vr1, . . . , vrq are (not necessarily distinct) vertices of K that span a simplex of K for r = 1, 2, . . . , s. (In more formal language, the group ∆q(K) is the free Abelian group generated by the set of all (q + 1)-tuples of the form (v0, v1, . . . , vq), where v0, v1, . . . , vq span a simplex of K.)
We recall some basic facts concerning permutations. A permutation of a set S is a bijection mapping S onto itself. The set of all permutations of some set S is a group; the group multiplication corresponds to composition of permutations. A transposition is a permutation of a set S which interchanges two elements of S, leaving the remaining elements of the set fixed. If S is finite and has more than one element then any permutation of S can be expressed as a product of transpositions. In particular any permutation of the set {0, 1, . . . , q} can be expressed as a product of transpositions (j −1, j) that interchange j − 1 and j for some j.
Associated to any permutation π of a finite set S is a number ℰπ, known as the parity or signature of the permutation, which can take on the values ±1.
If π can be expressed as the product of an even number of transpositions, then ℰπ = +1; if π can be expressed as the product of an odd number of transpositions then ℰπ = −1. The function π → π is a homomorphism from the group of permutations of a finite set S to the multiplicative group {+1, −1} (i.e., ℰπρ = ℰπℰρ for all permutations π and ρ of the set S). Note in particular that the parity of any transposition is −1.
Definition The qth chain group Cq(K) of the simplicial complex K is de fined to be the quotient group ∆q(K)/∆0q (K), where ∆0q (K) is the sub group of ∆q(K) generated by elements of the form (v0, v1, . . . , vq) where v0, v1, . . . , vq are not all distinct, and by elements of the form
(vπ(0), vπ(1), . . . , vπ(q)) − ℰπ(v0, v1, . . . , vq)
where π is some permutation of {0, 1, . . . , q} with parity ℰπ. For convenience, we define Cq(K) = {0} when q < 0 or q > dim K, where dim K is the dimension of the simplicial complex K. An element of the chain group Cq(K) is referred to as q-chain of the simplicial complex K.
We denote by 〈v0, v1, . . . , vq〉the element ∆0q (K) + (v0, v1, . . . , vq) of Cq(K) corresponding to (v0, v1, . . . , vq). The following results follow immediately from the definition of Cq(K).
Lemma 1.1 Let v0, v1, . . . , vq be vertices of a simplicial complex K that span a simplex of K. Then
• 〈v0, v1, . . . , vq〉 = 0 if v0, v1, . . . , vq are not all distinct,
• 〈vπ(0), vπ(1), . . . , vπ(q)〉 = ℰπ〈v0, v1, . . . , vq〉 for any permutation π of the set {0, 1, . . . , q}.
Example If v0 and v1 are the endpoints of some line segment then 〈v0, v1〉 = −〈v1, v0〉.
If v0, v1 and v2 are the vertices of a triangle in some Euclidean space then
〈v0, v1, v2〉= 〈v1, v2, v0〉 = 〈v2, v0, v1〉 = −〈v2, v1, v0〉
= −〈v0, v2, v1〉= −〈v1, v0, v2〉.
Definition An oriented q-simplex is an element of the chain group Cq(K) of the form ±〈v0, v1, . . . , vq〉, where v0, v1, . . . , vq are distinct and span a simplex of K.
An oriented simplex of K can be thought of as consisting of a simplex of K (namely the simplex spanned by the prescribed vertices), together with one of two possible ‘orientations’ on that simplex. Any ordering of the vertices determines an orientation of the simplex; any even permutation of the ordering of the vertices preserves the orientation on the simplex, whereas any odd permutation of this ordering reverses orientation.
Any q-chain of a simplicial complex K can be expressed as a sum of the form
n1σ1 + n2σ2 + · · · + nsσs
where n1, n2, . . . , ns are integers and σ1, σ2, . . . , σs are oriented q-simplices of K. If we reverse the orientation on one of these simplices σi then this reverses the sign of the corresponding coefficient ni . If σ1, σ2, . . . , σs represent distinct simplices of K then the coefficients n1, n2, . . . , ns are uniquely determined.
Example Let v0, v1 and v2 be the vertices of a triangle in some Euclidean space. Let K be the simplicial complex consisting of this triangle, together with its edges and vertices. Every 0-chain of K can be expressed uniquely in the form
n0〈v0〉 + n1〈v1〉 + n2〈v2〉
for some n0, n1, n2 ∈ Z. Similarly any 1-chain of K can be expressed uniquely in the form
m0〈v1, v2〉 + m1〈v2, v0〉 + m2〈v0, v1〉
for some m0, m1, m2 ∈ Z, and any 2-chain of K can be expressed uniquely as n〈v0, v1, v2〉 for some integer n
Lemma 1.2 Let K be a simplicial complex, and let A be an additive group.
Suppose that, to each (q + 1)-tuple (v0, v1, . . . , vq) of vertices spanning a simplex of K, there corresponds an element α(v0, v1, . . . , vq) of A, where
• α(v0, v1, . . . , vq) = 0 unless v0, v1, . . . , vq are all distinct,
• α(v0, v1, . . . , vq) changes sign on interchanging any two adjacent vertices vj−1 and vj .
Then there exists a well-defined homomorphism from Cq(K) to A which sends 〈v0, v1, . . . , vq〉 to α(v0, v1, . . . , vq) whenever v0, v1, . . . , vq span a simplex of K. This homomorphism is uniquely determined.
Proof The given function defined on (q + 1)-tuples of vertices of K extends to a well-defined homomorphism α: ∆q(K) → A given by

for all permutations π of {0, 1, . . . , q}, since the permutation π can be ex pressed as a product of transpositions (j − 1, j) that interchange j − 1 with j for some j and leave the rest of the set fixed, and the parity επ of π is given by επ = +1 when the number of such transpositions is even, and by επ = −1 when the number of such transpositions is odd. Thus the generators of ∆0q (K) are contained in ker α, and hence ∆0q (K) ⊂ ker α. The required homomorphism α˜: Cq(K) → A is then defined by the formula

الاكثر قراءة في التبلوجيا
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية

قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)