

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Covering Maps and Discontinuous Group Actions-Lifting of Continuous Maps Into Covering Spaces
المؤلف:
David R. Wilkins
المصدر:
Algebraic Topology
الجزء والصفحة:
...
24-6-2017
2368
Let p: X˜ → X be a covering map over a topological space X. Let f:Z → X be a continuous map from some topological space Z into X. If the topological space Z is locally path-connected then one can formulate a criterion to determine whether or not there exists a map f˜:Z → X˜ for which p ◦f˜ = f . This criterion is stated in terms of the homomorphisms of fundamental groups induced by the continuous maps f:Z → X and p: X˜ → X. We shall use this criterion in order to derive a necessary and sufficient condition for two covering maps over a connected and locally path-connected topological space to be topologically equivalent. We shall also study the deck transformations of a covering space over some connected and locally path-connected topological space.
Lemma 1.18 Let p: X˜ → X be a covering map over a topological space X, let Z be a locally path-connected topological space, and let g:Z → X˜ be a function from Z to X˜. Suppose that p ◦ g:Z → X is continuous, and that g ◦ γ: [0, 1] → X˜ is continuous for all paths γ: [0, 1] → Z in Z. Then the function g is continuous.
Proof Let f:Z → X be the composition function p◦g. Then the function f is a continuous map from Z to X.
Let z be a point of Z. Then there exists an open neighbourhood V of f(z) in X which is evenly covered by the map p. The inverse image p−1 (V ) of V in the covering space X˜ is a disjoint union of open sets, each of which is mapped homeomorphically onto V by p. One of these open sets contains the point g(z), since f(z) = p(g(z)). Let us denote this open set by V˜ . Then g(z) ∈ V˜ , and V˜ is mapped homeomorphically onto V by the map p. Let s: V → V˜ denote the inverse of the restriction (p|V˜ ): V˜ → V of the covering map p to V˜ . Then the map s is continuous, and p(s(v)) = v for all v ∈ V .
Now f−1 (V ) is an open set in Z containing the point z. But the topological space Z is locally path-connected. Therefore there exists a path-connected open set Nz in Z such that z ∈ Nz and Nz ⊂ f−1 (V ). We claim that g(Nz) ⊂ V˜ . Let z΄ be a point of Nz. Then there exists a path γ: [0, 1] → Nz in N from z to z΄ . Moreover f(γ([0, 1])) ⊂ V . Let η: [0, 1] → X˜ be the path in X˜ defined such that η(t) = s(f(γ(t))) for all t ∈ [0, 1]. Then η([0, 1]) ⊂ V˜ , and η is the unique path in X˜ for which η(0) = g(z) and p◦η = f ◦γ. But the composition function g ◦γ is a path in X˜, g(γ(0)) = g(z) and p◦g ◦γ = f ◦γ.
Therefore g ◦ γ = η. It follows that g(γ([0, 1])) ⊂ V˜ , and therefore g(z΄) ∈ V˜ .
This proves that g(Nz) ⊂ V˜ . Moreover g(z΄) = s(f(z΄)) for all z΄∈ Nz, and therefore the restriction g|Nz: Nz → X˜ of the function g to the open set Nz is continuous.
We have now shown that, given any point z of Z, there exists an open set Nz in Z such that z ∈ Nz and the restriction g|Nz of g:Z → X˜ to Nz is continuous. It follows from this that the function g is continuous on Z.
Indeed let U be an open set in X˜. Then g−1(U) ∩ Nz is an open set for all z ∈ Z, since g|Nz is continuous. Moreover g−1 (U) is the union of the open sets g−1(U) ∩ Nz as z ranges over all points of Z. It follows that g−1 (U) is itself an open set in Z. Thus g:Z → X˜ is continuous, as required.
Theorem1.19 Let p: X˜ → X be a covering map over a topological space X, and let f:Z → X be a continuous map from some topological space Z into X. Suppose that the topological space Z is both connected and locally path-connected. Suppose also that
f# (π1(Z, z0)) ⊂ p#(π1(X˜, x˜0)),
where z0 and x˜0 are points of Z and X˜ respectively which satisfy f(z0) = p(x˜0). Then there exists a unique continuous map f˜:Z → X˜ for which f˜ (z0) = x˜0 and p ◦f˜ = f.
Proof Let P denote the set of all ordered pairs (α, ρ), where α: [0, 1] → Z is a path in Z with α(0) = z0, ρ: [0, 1] → X˜ is a path in X˜ with ρ(0) = x˜0, and f ◦ α = p ◦ ρ. We claim that there is a well-defined function f˜:Z → X˜ characterized by the property that f˜ (α(1)) = ρ(1) for all (α, ρ) ∈ P.
The topological space Z is path-connected, by Proposition 1.14. Therefore, given any point z of Z, there exists a path α in Z from z0 to z. Moreover it follows from the Path Lifting Theorem that, given any path α in Z from z0 to z there exists a unique path ρ in X˜ for which ρ(0) = x ˜0 and p ◦ ρ = f ◦α. It follows that, given any element z of Z, there exists some element (α, ρ) of P for which α(1) = z.
Let (α, ρ) and (β, σ) be elements of P. Suppose that α(1) = β(1). Then [(f ◦α).(f ◦ β)−1] = f#[α.β−1]. But f#(π1(Z, z0)) ⊂ p#(π1(X˜, x˜0). Therefore [(f ◦ α).(f ◦ β)−1] ∈ p#(π1(X˜, x˜0)). It follows from Corollary 1.5 that ρ(1) =σ(1). We conclude therefore that if (α, ρ) and (β, σ) are elements of P, and if α(1) = β(1), then ρ(1) = σ(1). This establishes the existence of a unique function f˜:Z → X˜ characterized by the property that f˜ (α(1)) = ρ(1) for all (α, ρ) ∈ P. Now p(ρ(1)) = f(α(1)) for all (α, ρ) ∈ P, and therefore p◦f˜ = f.
Also f˜(z0) = ˜x0, since (εz0, εx˜0 ) ∈ P, where εz0 denotes the constant path in Z based at z0 and εx˜0 denotes the constant path in X˜ based at x˜0. Thus it only remains to show that the map f˜:Z → X˜ is continuous. In view of Lemma 1.18, it suffices to show that f˜ maps paths in Z to paths in X˜.
Let γ: [0, 1] → Z be a path in Z. We claim that the composition function f˜◦ γ is continuous, and is thus a path in X˜. Let α be a path in Z from z0 to γ(0), let ρ: [0, 1] → X˜ be the unique path in X˜ satisfying ρ(0) = x˜0 and p ◦ ρ = f ◦ α, and let σ: [0, 1] → X˜ be the unique path in X˜ satisfying σ(0) = ρ(1) and p ◦ σ = f ◦ γ. Now, for each τ ∈ [0, 1], there is a path ατ : [0, 1] → Z from z0 to γ(τ ) defined such that

Then f ◦ ατ (t) = p ◦ ρτ (t) for all t ∈ [0, 1] where ρτ : [0, 1] → X˜ is the path in X˜ from x˜0 to σ(τ ) defined such that

It follows that (ατ , ρτ ) ∈ P, for all τ ∈ [0, 1], and therefore f˜ (γ(τ )) = f˜ (ατ (1)) = ρτ (1) = σ(τ ) for all τ ∈ [0, 1]. Thus f˜ ◦ γ = σ. We conclude that f˜◦ γ is a path in X˜ for any path γ in Z. It then follows from Lemma 1.18 that the function f˜:Z → X˜ is a continuous map from Z to X˜ with the required properties.
Corollary 1.20 Let p: X˜ → X be a covering map over a topological space X, and let f:Z → X be a continuous map from some topological space Z into X.
Suppose that the covering space X˜ is path-connected and that the topological space Z is both connected and locally path-connected. Let z0 and w0 be points of Z and X˜ respectively for which f(z0) = p(w0). Then there exists a map f˜:Z → X˜ satisfying p ◦ f˜ = f if and only if there exists a subgroup H of π1(X, p(w0)) such that H is conjugate to p#(π1(X, w˜0)) and f#(π1(Z, z0)) ⊂ H .
Proof Suppose that there exists a map f˜:Z → X˜ for which p ◦f˜ = f.
Then f#(π1(Z, z0)) ⊂ H, where H = p#(π1(X˜,f˜(z0))). Moreover it follows from Lemma 1.7 that the subgroup H of π1(X, p(w0)) is conjugate to p#(π1(X, w˜0)) in π1(X, p(w0)).
Conversely suppose that f#(π1(Z, z0)) ⊂ H, where H is a subgroup of π1(X, p(w0)) that is conjugate to p#(π1(X, w˜0)). It follows from Lemma 1.7 that there exists a point x˜ of X˜ for which p(˜x) = p(w0) and p#(π1(X ˜, x˜)) = H. Then
f# (π1(Z, z0)) ⊂ p#(π1(X˜, x˜)).
It then follows from Theorem 1.19 that there exists a continuous map f˜:Z → X˜ for which p ◦ f˜= f, as required.
الاكثر قراءة في التبلوجيا
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية

قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)