تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Consistency
المؤلف:
Eves, Howard, and Carroll V
المصدر:
Newsom. An Introduction to the Foundations and Fundamental Concepts of Mathematics
الجزء والصفحة:
...
7-1-2016
1438
Mathematics contains a number of different systems, but each mathematical system, no matter how different it may be from another, has consistency as one of its goals. When a mathematical system is consistent, a statement and the opposite, or negation, of that same statement cannot both be proven true.
For example, in the familiar system of algebra, it is true that a + 1 >a. Even if a is a negative number, or 0, the statement is true. For example, 3.5 + 1 is 2.5, and 2.5 is greater than 3.5 (because 2.5 is to the right of 3.5 on a number line). Because this system is consistent, it is not possible to prove that a + 1 is less than a or equal to a.
Consistency is also important in the use of mathematical definitions and symbols. For example, (5)2equals 25 and (5)2also equals 25. Is the square root of 25 equal to 5 or to 5? The answer is both: 5 is the square root of 25, and 5 is also the square root of 25.
However, for consistency, the symbol for square root, √ , has been defined to mean only the positive square root, if one exists. So 25 has only one value (5) even though the equation x2= 25 has two roots, or solutions.
In solving this equation, you must add the± symbol to the radical symbol to show that both the positive and negative roots are desired.
The second step uses the rule that the square root can be taken of both sides of an equation, and the equation will still be true. Is it always true that, if a2 =b2 , then a = b? Consider the following example.
What went wrong? If a2= b2, then a = b is consistently true only when a and b are both positive numbers. This means that this rule is true (and the system maintains consistency) if it is written as a2=b2 means a= b when a, b ≥ 0.
When moving beyond the familiar systems of ordinary arithmetic and algebra, consistency poses some difficult challenges. For example, many mathematicians have wrestled with the sentence “This statement is not provable.” If the statement is provable, it is false (a contradiction!); if it is true, it is not provable. The work of the mathematicians David Hilbert, Kurt Gödel, Douglas Hofstadter, and Raymond Smullyan delve into this puzzle.
______________________________________________________________________________________________
Reference
Eves, Howard, and Carroll V. Newsom. An Introduction to the Foundations and Fundamental Concepts of Mathematics. New York: Holt, Rinehart, and Winston, 1965.
Hofstadter, Douglas R. Gödel, Escher, Bach: An Eternal Golden Braid. New York: Basic Books, 1999.
Reid, Constance. Hilbert. Berlin: Springer-Verlag, 1970.
Smullyan, Raymond M. What Is the Name of This Book? The Riddle of Dracula and Other Logical Puzzles. Englewood Cliffs, NJ: Prentice-Hall, 1978.