النبات
مواضيع عامة في علم النبات
الجذور - السيقان - الأوراق
النباتات الوعائية واللاوعائية
البذور (مغطاة البذور - عاريات البذور)
الطحالب
النباتات الطبية
الحيوان
مواضيع عامة في علم الحيوان
علم التشريح
التنوع الإحيائي
البايلوجيا الخلوية
الأحياء المجهرية
البكتيريا
الفطريات
الطفيليات
الفايروسات
علم الأمراض
الاورام
الامراض الوراثية
الامراض المناعية
الامراض المدارية
اضطرابات الدورة الدموية
مواضيع عامة في علم الامراض
الحشرات
التقانة الإحيائية
مواضيع عامة في التقانة الإحيائية
التقنية الحيوية المكروبية
التقنية الحيوية والميكروبات
الفعاليات الحيوية
وراثة الاحياء المجهرية
تصنيف الاحياء المجهرية
الاحياء المجهرية في الطبيعة
أيض الاجهاد
التقنية الحيوية والبيئة
التقنية الحيوية والطب
التقنية الحيوية والزراعة
التقنية الحيوية والصناعة
التقنية الحيوية والطاقة
البحار والطحالب الصغيرة
عزل البروتين
هندسة الجينات
التقنية الحياتية النانوية
مفاهيم التقنية الحيوية النانوية
التراكيب النانوية والمجاهر المستخدمة في رؤيتها
تصنيع وتخليق المواد النانوية
تطبيقات التقنية النانوية والحيوية النانوية
الرقائق والمتحسسات الحيوية
المصفوفات المجهرية وحاسوب الدنا
اللقاحات
البيئة والتلوث
علم الأجنة
اعضاء التكاثر وتشكل الاعراس
الاخصاب
التشطر
العصيبة وتشكل الجسيدات
تشكل اللواحق الجنينية
تكون المعيدة وظهور الطبقات الجنينية
مقدمة لعلم الاجنة
الأحياء الجزيئي
مواضيع عامة في الاحياء الجزيئي
علم وظائف الأعضاء
الغدد
مواضيع عامة في الغدد
الغدد الصم و هرموناتها
الجسم تحت السريري
الغدة النخامية
الغدة الكظرية
الغدة التناسلية
الغدة الدرقية والجار الدرقية
الغدة البنكرياسية
الغدة الصنوبرية
مواضيع عامة في علم وظائف الاعضاء
الخلية الحيوانية
الجهاز العصبي
أعضاء الحس
الجهاز العضلي
السوائل الجسمية
الجهاز الدوري والليمف
الجهاز التنفسي
الجهاز الهضمي
الجهاز البولي
المضادات الحيوية
مواضيع عامة في المضادات الحيوية
مضادات البكتيريا
مضادات الفطريات
مضادات الطفيليات
مضادات الفايروسات
علم الخلية
الوراثة
الأحياء العامة
المناعة
التحليلات المرضية
الكيمياء الحيوية
مواضيع متنوعة أخرى
الانزيمات
RNA vaccines
المؤلف:
Rebecca Ashfield, Angus Nnamdi Oli, Charles Esimone, Linda Anagu
المصدر:
Vaccinology and Methods in Vaccine Research
الجزء والصفحة:
P42-44
2025-01-23
207
Unlike DNA vaccines, which deliver genetic material into the nucleus, mRNA is delivered into the cytoplasm (Pardi et al., 2018). As for DNA vaccines, ribosomes translate the RNA to generate viral antigens, proteolysis takes place in the proteasome, and epitopes loaded onto Class I MHC proteins are displayed on the cell surface for recognition by CD8 cells. Antibody responses are generated against intact antigen that is secreted from the cell, or expressed on the cell surface if a transmembrane domain is included .Secreted protein can be take np by APCs ,degraded ,and presented by MHCII to CD4 cells (Pardietal.,2018). In 1993 it was established that liposome-encapsulated RNA induced in vivo Tcell stimulation (Kallen& Theß,2014;Verbekeetal.,2019).
Extensive research efforts have seen the development of many RNA vaccines that use cationic polymers, nanoparticles, and viral vectors as delivery systems, and are in different phases of clinical development. These include vaccines against Influenza virus (Petsch et al., 2012), rabies virus (Schnee et al., 2016), HIV-1 (Pollard et al., 2013), RSV (Geall et al., 2012), Zika virus (Richner et al., 2017), melanoma (Weide et al., 2009), nonsmall-cell lung cancer (Sebastian et al., 2014), and prostate cancer (Ku¨bler et al., 2015). At the time of writing, two human mRNA vaccines have been approved for use, the Moderna and Pfizer/BioNTech COVID-19 vaccines.
RNA vaccines share the advantages of DNA vaccines over conventional vaccines in that they are noninfectious, and manufacture follows the same pathway for vaccines against multiple indications. However, adverse reactions to RNA vaccines might be seen in individuals susceptible to autoimmunity (Pardi et al., 2018). Reactogenicity has also been reported in clinical trials of COVID-19 RNA vaccines (Wadman, 2020). Manufacture of RNA vaccines is described in the chapter addressing approaches to cancer vaccination.
References
-------------
Geall, A. J., Verma, A., Otten, G. R., Shaw, C. A., Hekele, A., Banerjee, K., Cu, Y., Beard, C. W., Brito, L. A., Krucker, T., O’Hagan, D. T., Singh, M., Mason, P. W., Valiante, N. M., Dormitzer, P. R., Barnett, S. W., Rappuoli, R., Ulmer, J. B., & Mandl, C. W. (2012). Nonviral delivery of self-amplifying RNA vaccines. Proceedings of the National Academy of Sciences of the United States of America, 109(36), 14604 14609. Available from https:// doi.org/10.1073/pnas.1209367109, Epub 2012 Aug 20. Available from 22908294.
Kallen, K. J., & Theß, A. (2014). A development that may evolve into a revolution in medicine: mRNA as the basis for novel, nucleotide-based vaccines and drugs. Therapeutic Advances in Vaccines., 2(1), 10 31. Available from https://doi.org/10.1177/2051013613508729. Available from 24757523, PMCID: PMC3991152.
Ku¨bler, H., Scheel, B., Gnad-Vogt, U., Miller, K., Schultze-Seemann, W., Vom Dorp, F., Parmiani, G., Hampel, C., Wedel, S., Trojan, L., Jocham, D., Maurer, T., Rippin, G., Fotin-Mleczek, M., von der Mu¨lbe, F., Probst, J., Hoerr, I., Kallen, K. J., Lander, T., & Stenzl, A. (2015). Self-adjuvanted mRNA vaccination in advanced prostate cancer patients: A first-in-man phase I/IIa study. Journal for Immunotherapy of Cancer., 3, 26. Available from https://doi.org/10.1186/s40425-015-0068-y. Available from 26082837, PMCID: PMC4468959.
Pardi, N., Hogan, M. J., Porter, F. W., & Weissman, D. (2018). mRNA vaccines—A new era in vaccinology. Nature Reviews. Drug Discovery, 17(4), 261 279. Available from https://doi. org/10.1038/nrd.2017.243, Epub 2018 Jan 12. Available from 29326426, PMCID: PMC5906799.
Petsch, B., Schnee, M., Vogel, A. B., Lange, E., Hoffmann, B., Voss, D., Schlake, T., Thess, A., Kallen, K. J., Stitz, L., & Kramps, T. (2012). Protective efficacy of in vitro synthesized, spe cific mRNA vaccines against influenza A virus infection. Nature Biotechnology, 30(12), 1210 1216. Available from https://doi.org/10.1038/nbt.2436, Epub 2012 Nov 25. Available from 23159882.
Pollard, C., Rejman, J., De Haes, W., Verrier, B., Van Gulck, E., Naessens, T., De Smedt, S., Bogaert, P., Grooten, J., Vanham, G., & De Koker, S. (2013). Type I IFN counteracts the induction of antigen-specific immune responses by lipid-based delivery of mRNA vaccines. Molecular Therapy: The Journal of the American Society of Gene Therapy, 21(1), 251 259. Available from https://doi.org/10.1038/mt.2012.202, Epub 2012 Sep 25. Available from 23011030.
Richner, J. M., Jagger, B. W., Shan, C., Fontes, C. R., Dowd, K. A., Cao, B., Himansu, S., Caine, E. A., Nunes, B. T. D., Medeiros, D. B. A., Muruato, A. E., Foreman, B. M., Luo, H., Wang, T., Barrett, A. D., Weaver, S. C., Vasconcelos, P. F. C., Rossi, S. L., Ciaramella, G., ...Diamond, M. S. (2017). Vaccine mediated protection against Zika virus-induced con genital disease. Cell., 170(2), 273 283.e12. Available from https://doi.org/10.1016/j. cell.2017.06.040. Available from 28708997, PMCID: PMC5546158.
Schnee, M., Vogel, A. B., Voss, D., Petsch, B., Baumhof, P., Kramps, T., & Stitz, L. (2016). An mRNA vaccine encoding rabies virus glycoprotein induces protection against lethal infection in mice and correlates of protection in adult and newborn pigs. PLoS Neglected Tropical Diseases, 10(6), e0004746. Available from https://doi.org/10.1371/journal.pntd.0004746. Available from 27336830, PMCID: PMC4918980.
Sebastian, M., Papachristofilou, A., Weiss, C., Fru ¨h,M.,Cathomas,R.,Hilbe,W.,Wehler,T.,Rippin, G., Koch, S. D., Scheel, B., Fotin-Mleczek, M., Heidenreich, R., Kallen, K. J., Gnad-Vogt, U., & Zippelius, A. (2014). Phase Ib study evaluating a self-adjuvanted mRNA cancer vaccine (RNActives) combined with local radiation as consolidation and maintenance treatment for patients with stage IV non-small cell lung cancer. BMC Cancer, 14, 748. Available from https:// doi.org/10.1186/1471-2407-14-748. Available from 25288198, PMCID: PMC4195907.
Verbeke, R., Lentacker, I., De Smedt, S. C., & Dewitte, H. (2019). Three decades of messenger RNA vaccine development. Nano Today., 28, 100766. Available from https://doi.org/ 10.1016/j.nantod.2019.100766.
Wadman, M. (2020). Public needs to prep for vaccine side effects. Science (New York, N.Y.), 370(6520), 1022. Available from https://doi.org/10.1126/science.370.6520.1022. Available from 33243869.
Weide, B., Pascolo, S., Scheel, B., Derhovanessian, E., Pflugfelder, A., Eigentler, T. K., Pawelec, G., Hoerr, I., Rammensee, H. G., & Garbe, C. (2009). Direct injection of protamine-protected mRNA: Results of a phase 1/2 vaccination trial in metastatic melanoma patients. Journal of Immunotherapy (Hagerstown, MD: 1997), 32(5), 498 507. Available from https://doi.org/10.1097/CJI.0b013e3181a00068. Available from 19609242