1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : تاريخ الرياضيات : تار يخ الجبر :

A history of the Burnside problem

المؤلف:  J J Tobin

المصدر:  On groups with exponent 4, Thesis

الجزء والصفحة:  ...

11-10-2015

1189

Some definitions

  1. A Group G is said to be periodic if for all g ∈ G there exists n ∈ N with gn = 1.
    (Note that the number n may depend on the element g.)
  2. A Group G is said to be periodic of bounded exponent if there exists n ∈ N with gn = 1 for all g ∈ G. The minimal such n is called the exponent of G.


It is clear that any finite group is periodic. In his 1902 paper, Burnside [1] introduced what he termed "a still undetermined point" in the theory of groups:

General Burnside Problem: 
Is a finitely generated periodic group necessarily finite?

Burnside immediately suggested the "easier" question:

Burnside Problem: 
Is a finitely generated periodic group of bounded exponent necessarily finite?≅

Definition 
Let Fm denote the free group of rank m. For a fixed n let Fmn denote the subgroup of Fm generated by gn for g ∈ G
Then Fmn is a normal subgroup of Fm(it is even an invariant subgroup), and we define the Burnside Group B(mn) to be the factor group FmFmn .

Burnside showed a number of results in his 1902 paper;

  1. B(1, nDescription: iso Cn
  2. B(m, 2) is an elementary abelian group of order 2n (a direct product of n copies of C2)
  3. B(m, 3) is finite of order ≤ 32m-1
  4. B(2, 4) is finite of order ≤ 212. (in fact Burnside claimed equality)


Burnside and Schur made early progress on the problems in two papers, which confirmed that the problem would certainly not be straightforward:

Theorem (Burnside, 1905 [2]) 
A finitely generated linear group which is finite dimensional and has finite exponent is finite i.e. any subgroup of GL(n,C) with bounded exponent is finite.

Theorem (Schur, 1911 [3]) 
Every finitely generated periodic subgroup of GL(n,C) is finite.

These results imply that any counterexample to the Burnside Problems will have to be difficult, i.e. not expressible in terms of the well-known linear groups. After this initial flurry of results, no more progress was made on the Problems until the early 1930's, when the topic was resurrected by the suggestion of a variant on the original problem:

Restricted Burnside Problem: 
Are there only finitely many finite m-generator groups of exponent n?

If the Restricted Burnside Problem has a positive solution for some mn then we may factor B(mn) by the intersection of all subgroups of finite index to obtain B0(m,n), the universal finite m-generator group of exponent n having all other finite m-generator groups of exponent n as homomorphic images.

Note that if B(m,n) is finite then B0(m,n) = B(m,n).

Despite this formulation having been present on the seminar circuit in the 1930's, it was not until 1940 that the first paper, by Grün [6], appeared specifically addressing the RBP, and not until 1950 that the term "Restricted Burnside Problem" was coined by Magnus [7].

1933

Levi, Van der Waerden [4] (independently) showed that B(m, 3) has order 3cc = m + mC2 + mC3 and is a metabelian group of nilpotency class 3.

1940

Sanov [5] proved that B(m, 4) is finite.

1954

Tobin [8] showed that B(2, 4) has order 212, and gave a presentation.

1955

Kostrikin[9] established that B0(2, 5) exists.

1956

Higman[10] proved that B0(m, 5) exists.

P Hall and G Higman [11] showed that B0(m, 6) exists and has order 2a3b where a = 1 + (m - 1)3c , b = 1 + (m - 1)2m , c = m + mC2 + mC3 and is hence soluble of derived length 3.

1958

Marshall Hall Jr. [12] proved that B(m, 6) is finite, a contribution which was described as a "heroic piece of calculation" by one reviewer.

Kostrikin[13] showed that B0(mp) exists for all p prime.

The 1956 Hall-Higman paper contains a remarkable reduction theorem for the Restricted Burnside Problem:

Theorem (Hall-Higman, 1956 [11]) 
Suppose that n = p1k1. ... .prkr with p1, ... , pr distinct primes.
Assume
 

  1. The RBP holds for groups of exponent piki,
  2. There are finitely many finite simple groups of exponent n,
  3. The outer automorphism group Out(G) = Aut(G)/Inn(Gis soluble for any finite simple group of exponent n.

Then the RBP holds for groups of exponent n.

(Note that iii. above is the so-called Schreier Conjecture)

Now (moving ahead), the classification of finite simple groups in the 1980's shows that ii. and iii. hold. Even earlier it was known for n odd by Feit-Thompson (the "odd-order paper" of 1962), and at the time of publication must have been a reasonable conjecture.

Consequently, to prove that B0(m,n) exists for all mn we need only (!) show that B0(mpk) exists for all m and prime powers pk. Kostrikin had "shown" that B0(mp) exists.

1959

Turning back to the original Burnside Problems, Novikov announced that B(mn) is infinite for n odd, n > 71. Novikov published a collection of ideas and theorems [14], but no definitive proof was forthcoming. John Britton suspected Novikov's proof was wrong and he began to work on the problem.

1964

Golod and Shafarevich [15] provided a counter-example to the General Burnside Problem -- an infinite, finitely generated, periodic group.

1968

S I Adian, P S Novikov [16] proved that B(mn) is infinite for n odd, n ≥ 4381 with an epic combinatorial proof based upon Novikov's earlier efforts.

This saddened Britton since he was close to publishing himself, but he continued and finished in 1970. His paper was published in 1973, but Adian discovered that it was wrong. There was not a single error in any lemma. However in order to apply them simultaneously the inequalities needed to make their hypotheses valid were inconsistent. Britton never really recovered, and this was to be the last major research paper he published.

1975

S I Adian [17] proved that B(mn) is infinite if n odd, n > 665, improving the Adian-Novikov result of 1968.

1982

Ol'shanskii showed that given p a prime, p > 1075, then there is an infinite group , every proper subgroup of which is cyclic of order p. (This is called the Tarski Monster)

1992

S V Ivanov proved that B(mn ) is infinite for m > 1 and n ≥ 248.

1994

Zelmanov was awarded a Fields medal for his positive solution of the Restricted Burnside Problem.

1996

I G Lysenok proved that B(mn) is infinite for m > 2 and n even ≥ 213.

 


It is still an open question whether B(2, 5) is finite or not.

W Burnside, On an unsettled question in the theory of discontinuous groups, Quart.J.Math33 (1902), 230-238.

___________________________________________________________

  1. W Burnside, On criteria for the finiteness of the order of a group of linear substitutions, Proc.London Math. Soc. (2) 3 (1905), 435-440.
  2. I Schur, Über Gruppen periodischer substitutionen, Sitzungsber. Preuss. Akad. Wiss. (1911), 619-627.
  3. F Levi / B L Van der Waerden, Über eine besonderen Klasse von Gruppen, Abh. Math. Sem. Hamburg. Univ. 9 (1933), 154-156 / Math. Zeit 32 (1930), 315-318.
  4. I N Sanov, Solution of Burnside's problem for n = 4, Leningrad State University Annals (Uchenyi Zapiski) Math. Ser. 10 (1940),166-170 (Russian).
  5. O Grün, Zusammenhang zwischen Potenzbildung und Kommutatorbildung, J.f.d. reine u. angew.Math. 182 (1940), 158-177.
  6. W Magnus, A connection between the Baker-Hausdorff formula and a problem of Burnside, Ann of Math. 52 (1950), 111-126; Errata, Ann. Of Math. 57 (1953), 606.
  7. J J Tobin, On groups with exponent 4, Thesis , University of Manchester (1954).
  8. A I Kostrikin, Lösung des abgeschwächten Burnsideschen Problems für den Exponenten 5. Izv. Akad. Nauk SSSR, Ser. Mat. 19, No. 3 (1955), 233-244 .
  9. G Higman, On finite groups of exponent five, Proc. Cambridge Philos. Soc. 52 (1956), 381-390.
  10. P Hall, P and G Higman, On the p-length of p-soluble groups and reduction theorems for Burnside's Problem, Proc. London Math. Soc. (3) 6 (1956), 1-42
  11. M Hall Jr., Solution of the Burnside Problem for Exponent Six, Illinois J. of Math. 2 (1958), 764-786.
  12. A I Kotsrikin, The Burnside Problem, Izv. Akad. Nauk. SSSR. Ser. Math. 23, (1958) 3-34 (Russian). American Math. Soc. Translations (2) 36 (1964), 63-99.
  13. P S Novikov, On periodic groups, Dokl. Akad. Nauk SSSR Ser. Mat27 (1959), 749-752.
  14. E S Golod, On nil algebras and finitely residual groups, Izv. Akad. Nauk SSSR. Ser. Mat. 1975, (1964), 273-276.
  15. S I Adjan and P S Novikov, On infinite periodic groups I, II, III, Izv. Akad. Nauk SSSR. Ser. Mat. 32 (1968), 212-244; 251-524; 709-731.
  16. S I Adjan, The Burnside problems and identities in groups, (Moscow, 1975). [Translated from the Russian by J Lennox and J Wiegold (Berlin, 1979).]
EN

تصفح الموقع بالشكل العمودي