1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : التبلوجيا :

Kähler Structure

المؤلف:  المرجع الالكتروني للمعلوماتيه

المصدر:  www.almerja.com

الجزء والصفحة:  ...

8-7-2021

1986

Kähler Structure

A Kähler structure on a complex manifold M combines a Riemannian metric on the underlying real manifold with the complex structure. Such a structure brings together geometry and complex analysis, and the main examples come from algebraic geometry. When M has n complex dimensions, then it has 2n real dimensions. A Kähler structure is related to the unitary group U(n), which embeds in SO(2n) as the orthogonal matrices that preserve the almost complex structure (multiplication by 'i'). In a coordinate chart, the complex structure of M defines a multiplication by i and the metric defines orthogonality for tangent vectors. On a Kähler manifold, these two notions (and their derivatives) are related.

The following are elements of a Kähler structure, with each condition sufficient for a Kähler structure to exist.

1. A Kähler metric. Near any point p, there exists holomorphic coordinates z_k=x_k+iy_k such that the metric has the form

 g=sumdx_k tensor dx_k+dy_k tensor dy_k+O(|z|^2),

(1)

where  tensor  denotes the vector space tensor product; that is, it vanishes up to order two at p. Hence any geometric equation in C^n involving only the first derivatives can be defined on a Kähler manifold. Note that a generic metric can be written to vanish up to order two, but not necessarily in holomorphic coordinates, using a Gaussian coordinate system.

2. A Kähler form omega is a real closed nondegenerate two-form, i.e., a symplectic form, for which omega(X,JX)>0 for nonzero tangent vectors X. Moreover, it must also satisfy omega(JX,JY)=omega(X,Y), where J is the almost complex structure induced by multiplication by i. That is,

 J(partial/(partialx_k))=partial/(partialy_k)

(2)

and

 J(partial/(partialy_k))=-partial/(partialx_k).

(3)

Locally, a Kähler form can be written as partialpartial^_f, where f is a function called a Kähler potential. The Kähler form is a real (1,1)-complex form.

3. A Hermitian metric h=g-iomega where the real part is a Kähler metric, as in item (1) above, and where the imaginary part is a Kähler form, as in item (2).

4. A metric for which the almost complex structure J is parallel. Since parallel transport is always an isometry, a Hermitian metric is well-defined by parallel transport along paths from a base point. The holonomy group is contained in the unitary group.

It is easy to see that a complex submanifold of a Kähler manifold inherits its Kähler structure, and so must also be Kähler. The main source of examples are projective algebraic varieties, complex submanifolds of complex projective space which are solutions to algebraic equations.

There are several deep consequences of the Kähler condition. For example, the Kähler identities, the Hodge decomposition of cohomology, and the Lefschetz theorem depends on the Kähler condition for compact manifolds.

EN

تصفح الموقع بالشكل العمودي