1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : التبلوجيا :

Atlas

المؤلف:  المرجع الالكتروني للمعلوماتيه

المصدر:  www.almerja.com

الجزء والصفحة:  ...

29-6-2021

2472

Atlas

An atlas is a collection of consistent coordinate charts on a manifold, where "consistent" most commonly means that the transition functions of the charts are smooth. As the name suggests, an atlas corresponds to a collection of maps, each of which shows a piece of a manifold and looks like flat Euclidean space. To use an atlas, one needs to know how the maps overlap. To be useful, the maps must not be too different on these overlapping areas.

The overlapping maps from one chart to another are called transition functions. They represent the transition from one chart's point of view to that of another. Let the open unit ball in R^n be denoted B_1. Then if phi:U->B_1 and psi:V->B_1 are two coordinate charts, the composition phi degreespsi^(-1) is a function defined on psi(U intersection V). That is, it is a function from an open subset of B_1 to B_1, and given such a function from R^n to R^n, there are conditions for it to be smooth or have k smooth derivatives (i.e., it is a C-k function). Furthermore, when R^(2n) is isomorphic to C^n (in the even dimensional case), a function can be holomorphic.

A smooth atlas has transition functions that are C-infty smooth (i.e., infinitely differentiable). The consequence is that a smooth function on one chart is smooth in any other chart (by the chain rule for higher derivatives). Similarly, one could have an atlas in class C^k, where the transition functions are in class C-k.

In the even-dimensional case, one may ask whether the transition functions are holomorphic. In this case, one has a holomorphic atlas, and by the chain rule, it makes sense to ask if a function on the manifold is holomorphic.

It is possible for two atlases to be compatible, meaning the union is also an atlas. By Zorn's lemma, there always exists a maximal atlas, where a maximal atlas is an atlas not contained in any other atlas. However, in typical applications, it is not necessary to use a maximal atlas and any sufficiently refined atlas will do.

EN

تصفح الموقع بالشكل العمودي