

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Writhe
المؤلف:
Adams, C. C.
المصدر:
The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. New York: W. H. Freeman
الجزء والصفحة:
...
15-6-2021
4415
Writhe

A knot property, also called the twist number, defined as the sum of crossings
of a link
,
![]() |
(1) |
where
defined to be
if the overpass slants from top left to bottom right or bottom left to top right and
is the set of crossings of an oriented link.
The writhe of a minimal knot diagram is not a knot invariant, as exemplified by the Perko pair, which have differing writhes (Hoste et al. 1998). This is because while the writhe is invariant under Reidemeister moves II and III, it may increase or decrease by one for a Reidemeister move of type I (Adams 1994, p. 153).
Thistlethwaite (1988) proved that if the writhe of a reduced alternating projection of a knot is not 0, then the knot is not amphichiral (Adams 1994).
A formula for the writhe is given by
![]() |
(2) |
where
is parameterized by
for
along the length of the knot by parameter
, and the frame
associated with
is
![]() |
(3) |
where
is a small parameter,
is a unit vector field normal to the curve at
, and the vector field
is given by
![]() |
(4) |
(Kaul 1999).
Letting Lk be the linking number of the two components of a ribbon, Tw be the twist, and Wr be the writhe, then the Calugareanu theorem states that
![]() |
(5) |
(Adams 1994, p. 187).
REFERENCES:
Adams, C. C. The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. New York: W. H. Freeman, pp. 152-153 and 185, 1994.
Hoste, J.; Thistlethwaite, M.; and Weeks, J. "The First
Knots." Math. Intell. 20, 33-48, Fall 1998.
Kauffman, L. Knots and Physics. Teaneck, NJ: World Scientific, p. 19, 1991.
Kaul, R. K. "Topological Quantum Field Theories--A Meeting Ground for Physicists and Mathematicians." 15 Jul 1999. https://arxiv.org/abs/hep-th/9907119.
Thistlethwaite, M. B. "Kauffman's Polynomial and Alternating Links.' Topology 27, 311-318, 1988.
الاكثر قراءة في التبلوجيا
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية






قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)