

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
HOMFLY Polynomial
المؤلف:
Adams, C. C.
المصدر:
he Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. New York: W. H. Freeman
الجزء والصفحة:
...
13-6-2021
4330
HOMFLY Polynomial
A 2-variable oriented knot polynomial
motivated by the Jones polynomial (Freyd et al. 1985). Its name is an acronym for the last names of its co-discoverers: Hoste, Ocneanu, Millett, Freyd, Lickorish, and Yetter (Freyd et al. 1985). Independent work related to the HOMFLY polynomial was also carried out by Prztycki and Traczyk (1987). HOMFLY polynomial is defined by the skein relationship
![]() |
(1) |
(Doll and Hoste 1991), where
is sometimes written instead of
(Kanenobu and Sumi 1993) or, with a slightly different relationship, as
![]() |
(2) |
(Kauffman 1991). It is also defined as
in terms of skein relationship
![]() |
(3) |
(Lickorish and Millett 1988). It can be regarded as a nonhomogeneous polynomial in two variables or a homogeneous polynomial in three variables. In three variables the skein relationship is written
![]() |
(4) |
It is normalized so that
. Also, for
unlinked unknotted components,
![]() |
(5) |
This polynomial usually detects chirality but does not detect the distinct enantiomers of the knots 09-042, 10-048, 10-071, 10-091, 10-104, and 10-125 (Jones 1987). The HOMFLY polynomial of an oriented knot is the same if the orientation is reversed. It is a generalization of the Jones polynomial
, satisfying
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
It is also a generalization of the Alexander polynomial
, satisfying
![]() |
(8) |
The HOMFLY polynomial of the mirror image
of a knot
is given by
![]() |
(9) |
so
usually but not always detects chirality.
A split union of two links (i.e., bringing two links together without intertwining them) has HOMFLY polynomial
![]() |
(10) |
Also, the composition of two links
![]() |
(11) |
so the polynomial of a composite knot factors into polynomials of its constituent knots (Adams 1994).
Mutants have the same HOMFLY polynomials. In fact, there are infinitely many distinct knots with the same HOMFLY polynomial (Kanenobu 1986). Examples include (05-001, 10-132), (08-008, 10-129) (08-016, 10-156), and (10-025, 10-056) (Jones 1987). Incidentally, these also have the same Jones polynomial.
M. B. Thistlethwaite has tabulated the HOMFLY polynomial for knots up to 13 crossings.
REFERENCES:
Adams, C. C. The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. New York: W. H. Freeman, pp. 171-172, 1994.
Doll, H. and Hoste, J. "A Tabulation of Oriented Links." Math. Comput. 57, 747-761, 1991.
Freyd, P.; Yetter, D.; Hoste, J.; Lickorish, W. B. R.; Millett, K.; and Oceanu, A. "A New Polynomial Invariant of Knots and Links." Bull. Amer. Math. Soc. 12, 239-246, 1985.
Jones, V. "Hecke Algebra Representations of Braid Groups and Link Polynomials." Ann. Math. 126, 335-388, 1987.
Kanenobu, T. "Infinitely Many Knots with the Same Polynomial." Proc. Amer. Math. Soc. 97, 158-161, 1986.
Kanenobu, T. and Sumi, T. "Polynomial Invariants of 2-Bridge Knots through 22 Crossings." Math. Comput. 60, 771-778 and S17-S28, 1993.
Kauffman, L. H. Knots and Physics. Singapore: World Scientific, p. 52, 1991.
Lickorish, W. B. R. and Millett, B. R. "The New Polynomial Invariants of Knots and Links." Math. Mag. 61, 1-23, 1988.
Livingston, C. Knot Theory. Washington, DC: Math. Assoc. Amer., pp. 213-217, 1993.
Morton, H. R. and Short, H. B. "Calculating the 2-Variable Polynomial for Knots Presented as Closed Braids." J. Algorithms 11, 117-131, 1990.
Przytycki, J. and Traczyk, P. "Conway Algebras and Skein Equivalence of Links." Proc. Amer. Math. Soc. 100, 744-748, 1987.
Stoimenow, A. "Jones Polynomials." https://www.ms.u-tokyo.ac.jp/~stoimeno/ptab/j10.html.
الاكثر قراءة في التبلوجيا
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية
















قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)