

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Arf Invariant
المؤلف:
Adams, C. C.
المصدر:
he Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. New York: W. H. Freeman,
الجزء والصفحة:
...
12-6-2021
2319
Arf Invariant
The arf invariant is a link invariant that always has the value 0 or 1. A knot has Arf invariant 0 if the knot is "pass equivalent" to the unknot and 1 if it is pass equivalent to the trefoil knot.
Arf invariants are implemented in the Wolfram Language as KnotData[knot, "ArfInvariant"].
The numbers of prime knots on
, 2, ... crossings having Arf invariants 0 and 1 are summarized in the table below.
![]() |
OEIS | counts of prime knots with , 2, ... crossings |
| 0 | A131433 | 0, 0, 0, 0, 1, 1, 3, 10, 25, 82, ... |
| 1 | A131434 | 0, 0, 1, 1, 1, 2, 4, 11, 24, 83, ... |
If
,
, and
are projections which are identical outside the region of the crossing diagram, and
and
are knots while
is a 2-component link with a nonintersecting crossing diagram where the two left and right strands belong to the different links, then
![]() |
(1) |
where
is the linking number of
and
.
The Arf invariant can be determined from the Alexander polynomial or Jones polynomial for a knot. For
the Alexander polynomial of
, the Arf invariant is given by
|
(2) |
(Jones 1985). Here, the
factor takes care of the ambiguity introduced by the fact that the Alexander polynomial is defined only up to multiples of
. (Alternately, this indeterminacy is also taken care of by the Conway definition of the polynomial.)
For the Jones polynomial
of a knot
,
![]() |
(3) |
(Jones 1985), where i is the imaginary number.
REFERENCES:
Adams, C. C. The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. New York: W. H. Freeman, pp. 223-231, 1994.
Jones, V. "A Polynomial Invariant for Knots via von Neumann Algebras." Bull. Amer. Math. Soc. 12, 103-111, 1985.
Sloane, N. J. A. Sequences A131433 and A131434 in "The On-Line Encyclopedia of Integer Sequences."
الاكثر قراءة في التبلوجيا
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية


, 2, ... crossings

قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)