

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Unknot
المؤلف:
Adams, C. C.
المصدر:
The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. New York: W. H. Freeman
الجزء والصفحة:
...
6-6-2021
2453
Unknot

The unknot, also called the trivial knot (Rolfsen 1976, p. 51), is a closed loop that is not knotted. In the 1930s Reidemeister first proved that knots exist which are distinct from the unknot by inventing and making use of the so-called Reidemeister moves and coloring each part of a knot diagram with one of three colors.
The unknot is implemented in the Wolfram Language as KnotData["Unknot"].
The knot sum of two unknots is another unknot.
The Jones polynomial of the unknot is defined to give the normalization
![]() |
(1) |
The unknot has Alexander polynomial
and Conway polynomial 
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
Surprisingly, there are known examples of nontrivial knots with Alexander polynomial 1, although no such examples occur among the knots of 10 or fewer crossings. An example is the
-pretzel knot (Adams 1994, p. 167). Rolfsen (1976, p. 167) gives four other such examples.
Haken (1961) devised an algorithm to tell if a knot projection is the unknot. The algorithm is so complicated, however, that it has never been implemented.
REFERENCES:
Adams, C. C. The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. New York: W. H. Freeman, pp. 165-169, 1994.
Bar-Natan, D. "The Knot
." https://www.math.toronto.edu/~drorbn/KAtlas/Knots/0.1.html.
Haken, W. "Theorie der Normalflachen." Acta Math. 105, 245-375, 1961.
Livingston, C. Knot Theory. Washington, DC: Math. Assoc. Amer., p. 15, 1993.
Rolfsen, D. Knots and Links. Wilmington, DE: Publish or Perish Press, 1976.
Steinhaus, H. Mathematical Snapshots, 3rd ed. New York: Dover, pp. 264-265, 1999.
الاكثر قراءة في التبلوجيا
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية








قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)