تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Vector Bundle Connection
المؤلف:
المرجع الالكتروني للمعلوماتيه
المصدر:
www.almerja.com
الجزء والصفحة:
...
29-5-2021
1531
A connection on a vector bundle is a way to "differentiate" bundle sections, in a way that is analogous to the exterior derivative
of a function
. In particular, a connection
is a function from smooth sections
to smooth sections of
with one-forms
that satisfies the following conditions.
1. (Leibniz rule), and
2. .
Alternatively, a connection can be considered as a linear map from bundle sections of , i.e., a section of
with a vector field
, to sections of
, in analogy to the directional derivative. The directional derivative of a function
, in the direction of a vector field
, is given by
. The connection, along with a vector field
, may be applied to a section
of
to get the section
. From this perspective, connections must also satisfy
![]() |
(1) |
for any smooth function . This property follows from the first definition.
For example, the trivial bundle admits a flat connection since any bundle section
corresponds to a function
. Then setting
gives the connection. Any connection on the trivial bundle is of the form
, where
is any one-form with values in
, i.e.,
is a matrix of one-forms.
The matrix of one-forms
![]() |
(2) |
determines a connection on the rank-3 bundle over
. It acts on a section
by the following.
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
In any trivialization, a connection can be described just as in the case of a trivial bundle. However, if the bundle is not trivial, then the exterior derivative
is not well-defined (globally) for a bundle section
. Still, the difference between any two connections must be one-forms with values in endomorphisms of
,i.e., matrices of one forms. So the space of connections forms an affine space.
The bundle curvature of the bundle is given by the formula . In coordinates,
is matrix of two-forms. For instance, in the example above,
![]() |
(9) |
is the curvature.
Another way of describing a connection is as a splitting of the tangent bundle of
as
. The vertical part of
corresponds to tangent vectors along the fibers, and is the kernel of
. The horizontal part is not well-defined a priori. A connection defines a subspace of
which is isomorphic to
. It defines
flat sections
such that
, which are a vector basis for the fiber bundles of
, at least nearby
. These flat sections determine the horizontal part of
near
. Also, a connection on a vector bundle can be defined by a principal bundle connection on the associated principal bundle.
In some settings there is a canonical connection. For example, a Riemannian manifold has the Levi-Civita connection, given by the Christoffel symbols of the first and second kinds, which is the unique torsion-free connection compatible with the metric. A holomorphic vector bundle with a Hermitian metric has a unique connection which is compatible with both metric and the complex structure.