المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية
Untitled Document
أبحث في الأخبار


Stellar parallax: The measurement of stellar parallax


  

1524       02:12 صباحاً       التاريخ: 1-8-2020              المصدر: A. Roy, D. Clarke

أقرأ أيضاً
التاريخ: 2023-07-03 683
التاريخ: 25-2-2016 2268
التاريخ: 2023-03-08 809
التاريخ: 12-7-2020 1191
التاريخ: 9-8-2020 1051
Stellar parallax: The measurement of stellar parallax

After the publication of the Copernican theory of the Universe, which stated that the observed behaviour of planets could be as easily explained if it was assumed that the Earth revolved about the Sun, repeated attempts were made to measure the parallaxes of the brighter, and presumably nearby, stars. Almost 300 years were to elapse, however, before success was achieved, first by Bessel at Konigsberg in 1838, then by Henderson at the Cape of Good Hope and by F Struve at Dorpat soon
after. The values they obtained showed why it took three centuries to detect the parallactic movements of stars. For the star 61Cygni, Bessel found a parallax of 0''·314; Henderson measured the parallax of α Centauri to be almost three-quarters of one second of arc while Struve showed that of Vega to be about one-tenth of 1 second of arc. These are very small angles. In fact, only 23 stars are known with parallaxes of 0''·24 or greater, Proxima Centauri having a parallax close to 0''·75.
The modern method of measuring a star’s parallax involves the use of photographic plates or CCD detectors. In principle, records are taken six months apart of the area of the sky surrounding the star. If the star is near enough, the shift of the Earth from one side of its orbit to the other should produce a corresponding apparent shift of the star against the very faint stellar background. This shift will change the right ascension and declination of the star and it is essentially
these changes in coordinates that are measured. Because the shifts are very small, they are measured using faint reference stars, so faint that they are presumably far enough away for their own parallactic displacements to be negligible. To fix our ideas, let us consider one such reference star only, with right ascension αR and declination δR. Let the heliocentric right ascension and declination of the parallax star be α and δ and let its apparent coordinates be α1, δ1 and α2, δ2 at the times the first and second records are taken.
Now the change in a star’s right ascension due to parallax will be given by an expression of the
form
α' − α = P × F
where α', α are the star’s apparent and heliocentric right ascensions, P is its parallax and F is a function of the star’s equatorial coordinates, the Sun’s longitude and the obliquity of the ecliptic. This function will have a particular value at any given date and this value, from a knowledge of the form of the function, can be calculated.
Let its values be F1 and F2 when the two records were made. Then
α1 − α = P × F1 α2 − α = P × F2.
Subtracting, we obtain
α1 − α2 = P(F1 − F2)
or, introducing the reference star’s right ascension,
1 − αR) − (α2 − αR) = P(F1 − F2).
The quantities (α1 − αR) and (α2 − αR) are the differences between the right ascensions of the parallax star and the reference star and can be measured on a suitable measuring engine or with reference to the pixel grid of the detector. Hence,
P = (α1 − αR) − (α2 − αR)/F1 − F2.
In practice, several plates or frames are taken at each epoch and more than one reference star is used, the two epochs (separated by six months) being chosen so that the most advantageous value of F1 − F2 is obtained. The practical limit to this method from Earth-based telescopes is quickly reached. Only parallaxes greater than 0''·01 can be measured at all reliably and only a few thousand stars have had their parallaxes measured in this way. A major step forward in accuracy was the launching of the artificial Earth satellite Hipparcos by the European Space Agency in August 1989. Its 0·30 m telescope measured the positions, proper motions1 and parallaxes of about 120 000 stars to an accuracy of better than 0''·002. It also measured the brightnesses and colours of more than one million stars.


Untitled Document
د. فاضل حسن شريف
يوم الغدير كذلك جعل فيه عيسى عليه‌ السلام شمعون...
حسن الهاشمي
الآثار الوضعية للذنوب... سيدتي لكي تبتعدي عن الزنا...
د. فاضل حسن شريف
يوم الغدير كذلك نصب فيه موسى عليه‌ السلام وصيه يوشع بن...
محمدعلي حسن
ما عقاب الحاسد؟
د. فاضل حسن شريف
يوم الغدير كذلك جعل الله تعالى النار فيه على إبراهيم...
جواد مرتضى
المباهلة
د. فاضل حسن شريف
يوم الغدير كذلك انتصر فيه موسى عليه السلام على السحرة...
جواد مرتضى
نبذة من سيرة الامام الهادي (عليه السلام)
د. فاضل حسن شريف
الشهادة الثالثة و مفردات من القرآن الكريم (أشهد أن) (ح 12)
زيد علي كريم الكفلي
مَسِيرَةٌ الْمَنَايَا...الْإِمَامُ الْحُسَيْنُ...
زيد علي كريم الكفلي
لَا شَيْءَ يُعْجِبُنِي ....
علي الحسناوي
امتيازات الشهادة التي يحصل عليها الموظف اثناء الخدمة
طه رسول
كيمياء الشاي: سحر العلوم في كوبك!
منتظر جعفر الموسوي
النمو الاقتصادي وتعزيز البنى التحتية للدول