المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
{افان مات او قتل انقلبتم على اعقابكم}
2024-11-24
العبرة من السابقين
2024-11-24
تدارك الذنوب
2024-11-24
الإصرار على الذنب
2024-11-24
معنى قوله تعالى زين للناس حب الشهوات من النساء
2024-11-24
مسألتان في طلب المغفرة من الله
2024-11-24

التشيّع فارسي المبدأ أو الصبغة
18-11-2016
التربة والدورة الزراعية المناسبة لزراعة القنب
12-4-2016
القراد والحمى النمشية وتيفوس القراد
20-1-2016
Writhe
15-6-2021
المركز القانوني للمؤسس
10-8-2017
كيف يعامل العالم الذكور
2023-03-14

Eric Temple Bell  
  
124   01:37 مساءً   date: 22-5-2017
Author : K O May
Book or Source : Biography in Dictionary of Scientific Biography
Page and Part : ...


Read More
Date: 22-5-2017 119
Date: 31-5-2017 187
Date: 31-5-2017 257

Born: 7 February 1883 in Peterhead, Aberdeenshire, Scotland

Died: 21 December 1960 in Watsonville, California, USA


Eric Temple Bell's parents were Helen Jane Lindsay Lyall and James Bell. James was a fish-curer and fruit grower, a fact which E T Bell did not mention in his autobiographical writings. For some reason he chose to hide the first part of his life, even from his own son. In 1884 the family left Scotland for the United States where they lived in San José in California. After the death of Bell's father, he returned to Britain in 1896 with his mother and older brother. From 1898 Bell attended Bedford Modern School where excellent mathematics teaching gave him his life-long interest in the subject. In particular, his interest in number theory came from this time.

In 1902 Bell, but not the rest of his family, returned to the United States. He says in his autobiographical writing that he left England:-

... to escape being shoved into Woolwich or the India Civil Service.

In the United States he supported himself with a variety of different jobs, from ranch hand and mule skinner to surveyor. He entered Stanford University in 1905, being awarded an A.B. with honours in mathematics two years later. He then studied for his Master's Degree at the University of Washington which he received in 1908. He received his doctorate from Columbia University in 1912 after one year of study for the dissertation The Cyclotomic Quinary Quintic. At Columbia his doctoral work was supervised by C J Keyser. Two years before he received his doctorate, Bell married Jessie Lillian Smith Brown. They had one son.

Bell taught mathematics at the University of Washington from 1912 being appointed first as an Instructor but rose to the rank of Professor over the fourteen years he taught at the university. In 1926 he left Washington when he was appointed professor of mathematics at the California Institute of Technology, holding that post until illness forced him to retire a year before his death. Bell had the honour of being elected President of the Mathematical Association of America and he held the position during the years 1931-33.

Bell wrote several popular books on the history of mathematics. He also made contributions to analytic number theory, Diophantine analysis and numerical functions. The American Mathematical Society awarded him the Bôcher Prize in 1924 for his memoir, Arithmetical paraphrases which had appeared in theTransactions of the American Mathematical Society in 1921. Although he wrote 250 research papers, including the one which received the Bôcher Prize, Bell is best remembered for his books, and therefore as an historian of mathematics.

His books Algebraic Arithmetic (1927) and The Development of Mathematics (1940) became classics. Bell explained that he had chosen his material:-

... after consultation with numerous professionals who knew from hard personal experience what mathematical invention means. On their advice, only main trends of the past thousand years are considered, and these are presented only through typical major episodes in each.

Struik, reviewing The Development of Mathematics writes:-

The experience of the author as a creative mathematician, a teacher and interested colleague has made it possible to place lively comments, pithy summaries and challenging outlooks between an otherwise factual survey of achievements. These surveys have unequal merits, excelling in arithmetic and algebra and in related fields, and losing their completeness somewhat in regions less professionally familiar to the author.

At a lower level Bell wrote books which included Men of Mathematics (1937) and Mathematics, Queen and Servant of Science (1951).

A Broadbent, see [4], described Bell and his writing in the following way:-

His style is clear and exuberant, his opinions, whether we agree with them or not, are expressed forcefully, often with humour and a little gentle malice. He was no uncritical hero-worshipper being as quick to mark the opportunity lost as the ground gained, so that from his books we get a vision of mathematics as a high activity of the questing human mind, often fallible, but always pressing on the never-ending search for mathematical truth.

Kenneth O May has written:-

[Bell's] insights and provocative style continue to influence and intrigue professional mathematicians - in spite of their historical inaccuracies and sometimes fanciful interpretations.

Another historian of mathematics, Ann Hibner Koblitz, is much less kind in her remarks:-

[Bell] might well become known to future generations of mathematicians and historians as the legend maker of the history of mathematics. It is to him that mathematicians are largely indebted for distorted impressions of their predecessors.

R L Cooke has written that Bell's description of Kovalevskaya is an:-

... infuriatingly patronising, innuendo-laden mistreatment.

Bell did not confine his writing to mathematics and he also wrote sixteen science fiction novels under the name John Taine [3]:-

... the excuse, Bell himself once wrote, being that if these popular novels made money, some publishers might be interested in more serious books.

Finally we should mention another of Bell's interests. He wrote several volumes of poetry, and perhaps this was his greatest love, but he never received any real recognition for it.


 

  1. K O May, Biography in Dictionary of Scientific Biography (New York 1970-1990). 
    http://www.encyclopedia.com/doc/1G2-2830900351.html
  2. Biography in Encyclopaedia Britannica. 
    http://www.britannica.com/eb/article-9015228/Eric-Temple-Bell

Books:

  1. A Broadbent, Eric Temple Bell, Nature 4763 (1961).
  2. C Reid, The search for E T Bell, also known as John Taine (Washington D.C., 1993).
  3. Eric Temple Bell, New York Times (22 Dec, 1960).
  4. J W Dauben, Eric Temple Bell, American National Biography 2 (New York, 1999), 502-503.
  5. C Reid, The alternative life of E T Bell, Amer. Math. Monthly 108 (5) (2001), 393-402.

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.