المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
تـشكيـل اتـجاهات المـستـهلك والعوامـل المؤثـرة عليـها
2024-11-27
النـماذج النـظريـة لاتـجاهـات المـستـهلـك
2024-11-27
{اصبروا وصابروا ورابطوا }
2024-11-27
الله لا يضيع اجر عامل
2024-11-27
ذكر الله
2024-11-27
الاختبار في ذبل الأموال والأنفس
2024-11-27

الدلالة الالتزاميّة
11-9-2016
وصف القرآن الكريم للإمام علي (عليه السلام)
19-6-2016
أحاديث النهي عن التفسير بالرأي
21-09-2015
تخزين الخضر الجذرية
2024-05-17
RNA Sequencing
17-12-2019
المتطلبات البيئية لأشجار المشمش
5-1-2016

Hermann Amandus Schwarz  
  
150   01:50 مساءً   date: 26-1-2017
Author : H Boerner
Book or Source : Biography in Dictionary of Scientific Biography
Page and Part : ...


Read More
Date: 7-2-2017 177
Date: 16-1-2017 165
Date: 6-2-2017 212

Born: 25 January 1843 in Hermsdorf, Silesia (now Poland)

Died: 30 November 1921 in Berlin, Germany


Hermann Schwarz's father was an architect. Hermann studied at the Gymnasium in Dortmund where his favourite subject was chemistry. When he left school he intended to take a degree in chemistry and he entered the Gewerbeinstitut, later called the Technical University of Berlin, with this aim.

Schwarz began his study of chemistry at Berlin but it was not long before Kummer and Weierstrass had influenced him to change to mathematics. The first of his teachers to influence the direction that his research would eventually take was Karl Pohlke. Through him Schwarz became interested in geometry. Schwarz attended Weierstrass's lectures on The integral calculus in 1861 and the notes that Schwarz took at these lectures still exist. His interest in geometry was soon combined with Weierstrass's ideas of analysis. As Bölling writes in [3]:-

... ideas coming from geometrical considerations were translated [by Schwarz] into the language of analysis.

He continued to study in Berlin, being supervised by Weierstrass, until 1864 when he was awarded his doctorate. His doctoral dissertation was examined by Kummer.

While in Berlin, Schwarz worked on minimal surfaces (surfaces of least area), a characteristic problem of the calculus of variations. Plateau published a famous memoir on the topic in 1866 and in the same year Weierstrass established a bridge between the theory of minimal surfaces and the theory of analytic functions. Schwarz had made an important contribution in 1865 when he discovered what is now known as the Schwarz minimal surface. This minimal surface has a boundary consisting of four edges of a regular tetrahedron.

Schwarz continued studying in Berlin for his teacher's training qualification which he completed by 1867. In that year he was appointed as a Privatdozent to the University of Halle. In 1869 he was appointed as professor of mathematics at the Eidgenössische Technische Hochschule in Zurich then, in 1875, he accepted appointment to the chair of mathematics at Göttingen University.

Perhaps surprisingly after Schwarz succeeded Weierstrass accepting a professorship in Berlin in 1892, the balance in favour of the most eminent university in Germany for mathematics, which had undoubtedly been Berlin, began to shift towards Göttingen. There were several reasons for this. Firstly Schwarz failed to keep up his output of mathematical research after his move. Bieberbach in [2] put it rather well when he wrote that Schwarz retired to Berlin in 1892. That this was the case should not have come as a complete surprise to those making the appointment for Schwarz had published his Complete Works in 1890, two years earlier. Boerner writes in [1] that:-

... teaching duties and concern for [Schwarz's] many students took so much of his time that he published very little more. A contributing element may have been his propensity for handling both the important and the trivial with the same thoroughness, a trait also evident in his mathematical papers.

We should not give the impression that the only reason for Berlin moving down from being the leading German university for mathematics to become its second university was due to Schwarz. The other effect was Klein whose dynamic leadership in Göttingen made it prosper at the expense of Berlin where Frobenius and Schwarz could not provide the same inspired approach. Perhaps the final sign that Göttingen had overtaken Berlin came in 1902 when Frobenius and Schwarz chose Hilbert to succeed to the Berlin chair which had become vacant on the death of Fuchs. Hilbert turned down the offer, preferring to remain at Göttingen. The Berlin chair was then filled by Schottky but, like Schwarz before him, he had moved to Berlin after his best days for mathematical research were behind him.

Schwarz continued teaching at Berlin until 1918. We shall describe some of his very fine mathematical achievements in a moment, but first we note that he had several interests outside mathematics, although his marriage was a mathematical one since he married Kummer's daughter. Outside mathematics he was the captain of the local Voluntary Fire Brigade and, more surprisingly, he assisted the stationmaster at the local railway station by closing the doors of the trains.

One important area which Schwarz worked on was that of conformal mappings. In 1870 he produced work related to the Riemann mapping theorem. Although Riemann had given a proof of the theorem that any simply connected region of the plane can be mapped conformally onto a disc, his proof involved using the Dirichlet problem. Weierstrass had shown that Dirichlet's solution to this was not rigorous, see [10] for details. Schwarz's gave a method to conformally map polygonal regions to the circle. Then, by approximating an arbitrary simply connected region by polygons he was able to give a rigorous proof of the Riemann mapping theorem. Schwarz also gave the alternating method for solving the Dirichlet problem which soon became a standard technique. This aspect of Schwarz's work is examined in detail in [10].

His most important work is a Festschrift for Weierstrass's 70th birthday. Schwarz answered the question of whether a given minimal surface really yields a minimal area. An idea from this work, in which he constructed a function using successive approximations, led Émile Picard to his existence proof for solutions of differential equations. It also contains the inequality for integrals now known as the 'Schwarz inequality', see [9] for details.

The fact that Schwarz should have come up with a special case of the general result now known as the Cauchy-Schwarz inequality (or the Cauchy-Bunyakovsky-Schwarz inequality) is not surprising for much of his work is characterised by looking at rather specific and narrow problems but solving them using methods of great generality which have since found widespread applications. That he found such general methods says much for his great intuition which was perhaps based on a deep feeling for geometry.

For example the Cauchy-Schwarz inequality appears in arithmetic, geometric and function-theoretic formulations in works of mathematicians such as Bunyakovsky, Cauchy, Grassmann, von Neumann and Weyl. The form in which the inequality is usually presented today:

<x + myx + my> ≥ 0

with its standard modern proof seems to have been first given by Weyl in 1918.

In answering the problem of when Gauss's hypergeometric series was an algebraic function Schwarz, as he had done so many times, developed a method which would lead to much more general results. It was in this work that he defined a conformal mapping of a triangle with arcs of circles as sides onto the unit disc which is now known as the 'Schwarz function'. This function is an early example of an automorphic function and in this work Schwarz was looking at ideas which led Klein and Poincaré to develop the theory of automorphic functions.

Let us end with quoting Bölling [3] on Schwarz's character. He writes:-

Schwarz was deeply influenced by Weierstrass. From their correspondence one finds that Schwarz addressed his teacher often with an accuracy going down to the last detail, sometimes almost timidly. Schwarz's demeanour has been described as naive, dramatic, coarse. In spite of giving the impression of self-confidence, he was, in fact, rather insecure and besides, not efficient in business matters.


 

  1. H Boerner, Biography in Dictionary of Scientific Biography (New York 1970-1990). 
    http://www.encyclopedia.com/doc/1G2-2830903930.html

Articles:

  1. L Bieberbach, H A Schwarz, Sitzungsberichte der Berliner mathematischen Gesellschaft 21 (1922), 47-51.
  2. R Bölling, Weierstrass and some members of his circle : Kovalevskaia, Fuchs, Schwarz, Schottky, in Mathematics in Berlin (Berlin, 1998), 71-82.
  3. C Carathéodory, Hermann Amandus Schwarz, Deutsches biographisches Jahrbuch III (1921), 236-238.
  4. G Hamel, Zum Gedächtnis an Hermann Amandus Schwarz, Jahresberichte der Deutschen Mathematiker-Vereinigung 32 (1923), 6-13.
  5. F Lindemann, Hermann Amandus Schwarz, Jahbuch der bayerischen Akademie der Wissenschaften (1922-1923), 75-77.
  6. P Ya Polubarinova-Kochina, A letter from H A Schwarz to S V Kovalevskaya (Russian), Voprosy Istor. Estestvoznan. i Tekhn. (4) (1980), 105-111.
  7. E Schmidt, Gedächtnisrede auf Hermann Amandus Schwarz, Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin (1922), 85-87.
  8. P Schreiber, The Cauchy- Bunyakovsky- Schwarz inequality, in Hermann Grassmann, Lieschow, 1994 (Greifswald, 1995), 64-70.
  9. R Tazzioli, Schwarz's critique and interpretation of the Riemann representation theorem (Italian), Rend. Circ. Mat. Palermo (2) Suppl. No. 34 (1994), 95-132.
  10. R von Mises, H A Schwarz, Z. Angew. Math. Mech. 1 (1921).

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.