المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الفيزياء
عدد المواضيع في هذا القسم 11580 موضوعاً
الفيزياء الكلاسيكية
الفيزياء الحديثة
الفيزياء والعلوم الأخرى
مواضيع عامة في الفيزياء

Untitled Document
أبحث عن شيء أخر
تأثير الأسرة والوراثة في الأخلاق
2024-10-28
تأثير العشرة في التحليلات المنطقيّة
2024-10-28
دور الأخلّاء في الروايات الإسلاميّة
2024-10-28
ترجمة ابن عبد الرحيم
2024-10-28
ترجمة محمد بن لب الأمي
2024-10-28
من نثر لسان الدين
2024-10-28

من ترجمة ابن عمار
10/11/2022
Cytosine Deaminase
4-1-2018
تفريق الصوت acoustic dispersion
20-9-2017
تصادم من النوع الثاني collision of the second kind
21-5-2018
دراسة حالة دليل جودة الهواء في الولايات المتحدة
2023-12-26
Generalized Hyperbolic Functions
3-6-2019

The laser equations in a resonator  
  
1292   06:20 مساءاً   date: 22-12-2016
Author : H. HAKEN
Book or Source : LASER LIGHT DYNAMICS
Page and Part : vol 2 ، p110


Read More
Date: 1-12-2016 1722
Date: 20-1-2021 1295
Date: 22-1-2021 1078

The laser equations in a resonator

As we know, in general laser processes take place within a resonator. It is defined with respect to the laser by the mirrors mounted at the endfaces of the laser material or by externally mounted mirrors. First let us consider the electric or electro-magnetic field in vacuum and the one-dimensional case (compare fig. 1.1). Let us assume that the conductivity of the mirrors is infinite. In such a case the tangential component of the electric field strength must vanish on the mirrors. This boundary condition is fulfilled by the electric field if it has nodes on the mirrors. In this case the electric field strength can be represented by

 (1.1)

Here k is given by mπ/ L, where L is the distance between the mirrors; m is an arbitrary integer. Thus in the resonator a set of different modes can develop. In the following we shall free ourselves from the specific form of the standing wave (1.1) and we shall denote the spatial part of the wave function by uλ(x). In the special case just considered u, has the form

 (1.2)

where e, is the unit vector in the direction of the field polarization, i.e. it is parallel to the electric field strength. N is a normalization factor and the spatial variation of uλ is described by the sine-function as in (1.1). But now we may also assume that uλ describes a three-dimensional configuration of the electric field, for instance waves which, so to speak, do not run parallel to the laser axis. The electric field strength which may be a general function of space and time can be represented by a superposition of such

Fig. 1.1. The electric field strength E(x) between two mirrors separated by the distance L.

standing waves uλ(x):

    (1.3)

In it Eλ(t) are time dependent amplitudes. In the following we shall assume that the functions uλ of the individual modes obey a wave equation of the form

    (1.4)

As is shown in resonator theory, the functions uλ obey an orthogonality relation

   (1.5)

Because a laser resonator has open sides, the relations (1.5) are valid only approximately. We shall not discuss this question in more detail here, however. Our goal will rather be to derive equations for the field amplitudes Eλ(t). Our starting point is again the wave equation for the electric field strength which we briefly recall

   (1.6)

We insert (1.3) into it and use the relation (1.4) so that we may replace the spatial derivatives by a multiplication by -⍵2λ/c2. Then we multiply the resulting equation by uλ and integrate over the volume of the resonator. By means of the orthogonality relation (1.5) we obtain

     (1.7)

In it we have used μ0c2 = 1/ε0 and the abbreviation

    (1.8)

As we may recall, a is the electric conductivity of the material. If the material possesses a homogeneous conductivity we may pull a in front of the integral and may use again the orthogonality relation (1.5). If the conductivity varies spatially, for instance if it is concentrated in the mirrors, we must at least in principle be aware of the fact that also such σλλʹ ma y differ from 0 for A ≠ λ. Because this question leads to rather subtle discussions we shall not follow up this problem now but shall come back to it on later occasions. Finally we have to explain Pλ which occurs on the r.h.s. of (1.7). This is given by

    (1.9)

If we consider the decomposition (1.3) into the u's as Fourier decomposition, Pλ is nothing but a Fourier component of the polarization, P. In order to establish the relation of Pλ with the microscopic representation of the polarization, i.e. the individual dipole moments, we recall that the polarization P is related to the individual dipole moments pμ by

   (1.10)

Inserting (1.9) in (1.10) and recalling the property of the 8-function, we may immediately evaluate (1.9) and obtain

     (1.11)

So far we have transformed the equation for the electric field strength E into equations for the individual amplitudes Eλ(t). We now do the same for the matter equations. This means only some writing because in eqs. (i) and (ii) we have merely to replace on the r.h.s. E(xμ, t ) by the corresponding decomposition (1.3). We immediately obtain

   (1.12)

   (1.13)

Eqs. (1.7), (1.12) and (1.13) represent a good starting point for the treatment of laser processes. In many cases these equations can be still considerably simplified, however, by introducing two approximations which in general are well founded.




هو مجموعة نظريات فيزيائية ظهرت في القرن العشرين، الهدف منها تفسير عدة ظواهر تختص بالجسيمات والذرة ، وقد قامت هذه النظريات بدمج الخاصية الموجية بالخاصية الجسيمية، مكونة ما يعرف بازدواجية الموجة والجسيم. ونظرا لأهميّة الكم في بناء ميكانيكا الكم ، يعود سبب تسميتها ، وهو ما يعرف بأنه مصطلح فيزيائي ، استخدم لوصف الكمية الأصغر من الطاقة التي يمكن أن يتم تبادلها فيما بين الجسيمات.



جاءت تسمية كلمة ليزر LASER من الأحرف الأولى لفكرة عمل الليزر والمتمثلة في الجملة التالية: Light Amplification by Stimulated Emission of Radiation وتعني تضخيم الضوء Light Amplification بواسطة الانبعاث المحفز Stimulated Emission للإشعاع الكهرومغناطيسي.Radiation وقد تنبأ بوجود الليزر العالم البرت انشتاين في 1917 حيث وضع الأساس النظري لعملية الانبعاث المحفز .stimulated emission



الفيزياء النووية هي أحد أقسام علم الفيزياء الذي يهتم بدراسة نواة الذرة التي تحوي البروتونات والنيوترونات والترابط فيما بينهما, بالإضافة إلى تفسير وتصنيف خصائص النواة.يظن الكثير أن الفيزياء النووية ظهرت مع بداية الفيزياء الحديثة ولكن في الحقيقة أنها ظهرت منذ اكتشاف الذرة و لكنها بدأت تتضح أكثر مع بداية ظهور عصر الفيزياء الحديثة. أصبحت الفيزياء النووية في هذه الأيام ضرورة من ضروريات العالم المتطور.