

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Topological Spaces-The Lebesgue Lemma and Uniform Continuity
المؤلف:
David R. Wilkins
المصدر:
Algebraic Topology
الجزء والصفحة:
...
26-9-2016
2222
Definition Let X be a metric space with distance function d. A subset A of X is said to be bounded if there exists a non-negative real number K such that d(x, y) ≤ K for all x, y ∈ A. The smallest real number K with this property is referred to as the diameter of A, and is denoted by diam A.
(Note that diam A is the supremum of the values of d(x, y) as x and y range over all points of A.)
Lemma 1.1 (Lebesgue Lemma) Let (X, d) be a compact metric space. Let U be an open cover of X. Then there exists a positive real number δ such that every subset of X whose diameter is less than δ is contained wholly within one of the open sets belonging to the open cover U.
Proof Every point of X is contained in at least one of the open sets belonging to the open cover U. It follows from this that, for each point x of X, there exists some δx > 0 such that the open ball B(x, 2δx) of radius 2δx about the point x is contained wholly within one of the open sets belonging to the open cover U. But then the collection consisting of the open balls B(x, δx) of radius δx about the points x of X forms an open cover of the compact space X. Therefore there exists a finite set x1, x2, . . . , xr of points of X such that
B(x1, δ1) ∪ B(x2, δ2) ∪ · · · ∪ B(xr, δr) = X,
where δi = δxi
for i = 1, 2, . . . , r. Let δ > 0 be given by
δ = minimum(δ1, δ2, . . . , δr).
Suppose that A is a subset of X whose diameter is less than δ. Let u be a point of A. Then u belongs to B(xi , δi) for some integer i between 1 and r.
But then it follows that A ⊂ B(xi, 2δi), since, for each point v of A,
d(v, xi) ≤ d(v, u) + d(u, xi) < δ + δi ≤ 2δi.
But B(xi, 2δi) is contained wholly within one of the open sets belonging to the open cover U. Thus A is contained wholly within one of the open sets belonging to U, as required.
Let U be an open cover of a compact metric space X. A Lebesgue number for the open cover U is a positive real number δ such that every subset of X whose diameter is less than δ is contained wholly within one of the open sets belonging to the open cover U. The Lebesgue Lemma thus states that there exists a Lebesgue number for every open cover of a compact metric space.
Let X and Y be metric spaces with distance functions dX and dY respectively, and let f: X → Y be a function from X to Y . The function f is said to be uniformly continuous on X if and only if, given ε > 0, there exists some δ > 0 such that dY (f(x), f(x΄)) < ε for all points x and x΄ of X satisfying dX(x, x΄) < δ. (The value of δ should be independent of both x and x΄.)
Theorem 1.2 Let X and Y be metric spaces. Suppose that X is compact.
Then every continuous function from X to Y is uniformly continuous.
Proof Let dX and dY denote the distance functions for the metric spaces X and Y respectively. Let f: X → Y be a continuous function from X to Y .
We must show that f is uniformly continuous.
Let ε > 0 be given. For each y ∈ Y , define
Vy = {x ∈ X : dY (f(x), y) <1/2ε}.
Note that Vy = f -1(BY (y,1/2 ε) , where BY (y,1/2 ε) denotes the open ball of radius 1/2 ε about y in Y . Now the open ball BY (y, 1/2ε) is an open set in Y , and f is continuous. Therefore Vy is open in X for all y ∈ Y . Note that x ∈ Vf(x) for all x ∈X.
Now {Vy : y ∈ Y } is an open cover of the compact metric space X. It follows from the Lebesgue Lemma (Lemma 1.27) that there exists some δ > 0 such that every subset of X whose diameter is less than δ is a subset of some set Vy. Let x and x΄ be points of X satisfying dX(x, x΄) < δ. The diameter of the set {x, x΄} is dX(x, x΄), which is less than δ. Therefore there exists some y ∈ Y such that x ∈ Vy and x΄ ∈ Vy. But then dY (f(x), y) <1/2ε and dY (f(x΄), y) <1/2ε, and hence
dY (f(x), f(x΄)) ≤ dY (f(x), y) + dY (y, f(x΄)) < ε.
This shows that f: X → Y is uniformly continuous, as required.
Let K be a closed bounded subset of Rn . It follows that any continuous function f: K → Rk is uniformly continuous.
الاكثر قراءة في التبلوجيا
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية

قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)