المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
تأثير الأسرة والوراثة في الأخلاق
2024-10-28
تأثير العشرة في التحليلات المنطقيّة
2024-10-28
دور الأخلّاء في الروايات الإسلاميّة
2024-10-28
ترجمة ابن عبد الرحيم
2024-10-28
ترجمة محمد بن لب الأمي
2024-10-28
من نثر لسان الدين
2024-10-28

طُلاع ربيعي Spring Pollinosis
11-3-2020
تحمل المعاناة المرضية
31-3-2021
سلطة أمراء المقاطعات لم تمح جملة.
2024-02-23
نظام البلمرة المتجانس Homogeneous
22-11-2017
الأنزيمات Enzymes
19-4-2016
Triplet Square Well
23-8-2016

Gaspard Gustave de Coriolis  
  
15   02:03 مساءاً   date: 17-7-2016
Author : F S Freiman
Book or Source : Gaspard Gustave Coriolis
Page and Part : ...


Read More
Date: 19-7-2016 81
Date: 21-7-2016 109
Date: 18-7-2016 34

Born: 21 May 1792 in Paris, France
Died: 19 September 1843 in Paris, France


Gaspard-Gustave de Coriolis's father was Jean-Baptiste-Elzéar Coriolis and his mother was Marie-Sophie de Maillet. His father became a sub-lieutenant in the Bourbonnais regiment in 1773, fought in the American campaign in the Rochambeau corps in 1780, and returned to France when he was promoted to captain on 15 July 1784. He became an officer with Louis XVI in 1790 but this put him in difficulties when the monarchy was in trouble. The King tried to escape and fled Paris on 21 June 1791 but he was caught at Varennes and brought back to the capital. Gaspard-Gustave Coriolis was born in June 1792 and on 21 September of that year the monarchy was abolished. Coriolis's father fled to Nancy where he became an industrialist. Louis XVI was guillotined in Paris in January 1793.

Coriolis was brought up in Nancy and attended school there. He sat the entrance examination for the École Polytechnique in 1808 and he was placed second of all the students entering that year. On graduating he entered the École des Ponts et Chaussées in Paris. With the engineering corps he worked for several years in the Meurthe-et-Moselle district and the Vosges mountains. After his father died Coriolis had to support the family and, with his health already poor, he decided to accept a post in the École Polytechnique in 1816 tutoring analysis. He had been recommended for this position by Cauchy.

Coriolis became professor of mechanics at the École Centrale des Artes et Manufactures in 1829. In July 1830 there was a revolution and, following this Cauchy left Paris in September 1830. Political events in France meant that Cauchy was now required to swear an oath of allegiance to the new regime and when he failed to return to Paris to do so he lost all his positions there. Coriolis was offered Cauchy's position at the École Polytechnique but by this time he was highly involved in his research and decided not to take on any further teaching duties.

Despite not accepting further duties at the École Polytechnique, Coriolis did take on a position at the École des Ponts and Chaussées in 1832. There he teamed up with Navier teaching applied mechanics. Navier died in 1836 and Coriolis was appointed to his chair at the École des Ponts and Chaussées. He was also elected to replace Navier in the mechanics section of the Académie des Sciences. Coriolis continued teaching at the École Polytechnique until 1838 when he decided to end teaching and take on the role of director of studies. He did this task extremely well but his poor health which had afflicted him since he was a young man became much worse in the spring of 1843 and a died a few months later.

Coriolis studied mechanics and engineering mathematics, in particular friction, hydraulics, machine performance and ergonomics. He introduced the terms 'work' and 'kinetic energy' with their present scientific meaning. Coriolis began developing his ideas in 1819 and he showed some papers to Poncelet in 1824. Both Coriolis and Poncelet published in 1829; the paper by Coriolis being Du Calcul de l'effet des machines. Despite the two papers appearing in 1829 there was no argument as to who initiated the idea, with Poncelet acknowledging that the word "work" was brought in by Coriolis. The article [5] simplifies this piece of history so much that it could be misleading on this point. The contribution of Coriolis, Poncelet, and Navier to the concept of 'work' is examined in detail in [6].

Coriolis proposed a unit of work, namely the 'dynamode'. The unit represents 1000 kilogram-metres and was proposed by Coriolis as a measure which could provide a sensible unit with which to measure the work which a person might do, a horse, or a steam engine. However, although his term 'work' has become standard, the dynamode did not prove popular as the unit of work.

It is not the ideas of 'work' for which Coriolis is best remembered, however, rather it is for the Coriolis force which appears in the paper Sur les équations du mouvement relatif des systèmes de corps (1835). He showed that the laws of motion could be used in a rotating frame of reference if an extra force called the Coriolis acceleration is added to the equations of motion.

In 1835 Coriolis wrote on a mathematical theory of billiards in Théorie mathématique des effets du jeu de billiard. He also wrote Traité de la mécanique des corps solides (1844).

Costabel sums up his contribution as follows [1]:-

One application of [Coriolis force] is to fluid masses on the earth's surface. Accordingly, in 1963, a French oceanographic research vessel was named for [Coriolis], thus honouring the scientist - and not the engineer - in a fitting tribute to a career characterised by its union of theory and technical application.


1.     P Costabel, Biography in Dictionary of Scientific Biography (New York 1970-1990). 
http://www.encyclopedia.com/doc/1G2-2830900989.html

2.     Biography in Encyclopaedia Britannica. 
http://www.britannica.com/eb/article-9026304/Gustave-Gaspard-Coriolis

Books:

3.     F S Freiman, Gaspard Gustave Coriolis (Moscow, 1961).

Articles:

4.     R Dugas, Sur l'origine du théorème de Coriolis, Rev. Sci. (Rev. Rose Illus.) 79 (1941), 267-270.

5.     O I Franksen, The virtual work principle - a unifying systems concept, in Structures and operations in engineering and management systems, Trondheim, 1980 (Trondheim, 1981), 17-152.

6.     I Grattan-Guinness, Work for the workers : advances in engineering mechanics and instruction in France, 1800-1830, Ann. of Sci. 41 (1) (1984), 1-33.

 

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.