

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Fisher,s Exact Test
المؤلف:
المرجع الالكتروني للمعلوماتيه
المصدر:
www.almerja.com
الجزء والصفحة:
...
1-5-2021
2443
Fisher's Exact Test
Fisher's exact test is a statistical test used to determine if there are nonrandom associations between two categorical variables.
Let there exist two such variables
and
, with
and
observed states, respectively. Now form an
matrix in which the entries
represent the number of observations in which
and
. Calculate the row and column sums
and
, respectively, and the total sum
![]() |
(1) |
of the matrix. Then calculate the conditional probability of getting the actual matrix given the particular row and column sums, given by
![]() |
(2) |
which is a multivariate generalization of the hypergeometric probability function. Now find all possible matrices of nonnegative integers consistent with the row and column sums
and
. For each one, calculate the associated conditional probability using (2), where the sum of these probabilities must be 1.
To compute the P-value of the test, the tables must then be ordered by some criterion that measures dependence, and those tables that represent equal or greater deviation from independence than the observed table are the ones whose probabilities are added together. There are a variety of criteria that can be used to measure dependence. In the
case, which is the one Fisher looked at when he developed the exact test, either the Pearson chi-square or the difference in proportions (which are equivalent) is typically used. Other measures of association, such as the likelihood-ratio-test,
-squared, or any of the other measures typically used for association in contingency tables, can also be used.
The test is most commonly applied to
matrices, and is computationally unwieldy for large
or
. For tables larger than
, the difference in proportion can no longer be used, but the other measures mentioned above remain applicable (and in practice, the Pearson statistic is most often used to order the tables). In the case of the
matrix, the P-value of the test can be simply computed by the sum of all
-values which are
.
For an example application of the
test, let
be a journal, say either Mathematics Magazine or Science, and let
be the number of articles on the topics of mathematics and biology appearing in a given issue of one of these journals. If Mathematics Magazine has five articles on math and one on biology, and Science has none on math and four on biology, then the relevant matrix would be
![]() |
(3) |
Computing
gives
![]() |
(4) |
and the other possible matrices and their
s are
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
which indeed sum to 1, as required. The sum of
-values less than or equal to
is then 0.0476 which, because it is less than 0.05, is significant. Therefore, in this case, there would be a statistically significant association between the journal and type of article appearing.
الاكثر قراءة في الاحتمالات و الاحصاء
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية





![[4 1; 2 3] P](https://mathworld.wolfram.com/images/equations/FishersExactTest/Inline27.gif)


![[3 2; 3 2] P](https://mathworld.wolfram.com/images/equations/FishersExactTest/Inline30.gif)


![[2 3; 4 1] P](https://mathworld.wolfram.com/images/equations/FishersExactTest/Inline33.gif)


![[1 4; 5 0] P](https://mathworld.wolfram.com/images/equations/FishersExactTest/Inline36.gif)


قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)