تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Geometric Distribution
المؤلف:
Beyer, W. H.
المصدر:
CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press
الجزء والصفحة:
...
17-4-2021
1862
Geometric Distribution
The geometric distribution is a discrete distribution for , 1, 2, ... having probability density function
![]() |
![]() |
![]() |
(1) |
![]() |
![]() |
![]() |
(2) |
where ,
, and distribution function is
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
The geometric distribution is the only discrete memoryless random distribution. It is a discrete analog of the exponential distribution.
Note that some authors (e.g., Beyer 1987, p. 531; Zwillinger 2003, pp. 630-631) prefer to define the distribution instead for , 2, ..., while the form of the distribution given above is implemented in the Wolfram Language as GeometricDistribution[p].
is normalized, since
![]() |
(5) |
The raw moments are given analytically in terms of the polylogarithm function,
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
This gives the first few explicitly as
![]() |
![]() |
![]() |
(9) |
![]() |
![]() |
![]() |
(10) |
![]() |
![]() |
![]() |
(11) |
![]() |
![]() |
![]() |
(12) |
The central moments are given analytically in terms of the Lerch transcendent as
![]() |
![]() |
![]() |
(13) |
![]() |
![]() |
![]() |
(14) |
This gives the first few explicitly as
![]() |
![]() |
![]() |
(15) |
![]() |
![]() |
![]() |
(16) |
![]() |
![]() |
![]() |
(17) |
![]() |
![]() |
![]() |
(18) |
![]() |
![]() |
![]() |
(19) |
so the mean, variance, skewness, and kurtosis excess are given by
![]() |
![]() |
![]() |
(20) |
![]() |
![]() |
![]() |
(21) |
![]() |
![]() |
![]() |
(22) |
![]() |
![]() |
![]() |
(23) |
For the case (corresponding to the distribution of the number of coin tosses needed to win in the Saint Petersburg paradox) the formula (23) gives
![]() |
(24) |
The first few raw moments are therefore 1, 3, 13, 75, 541, .... Two times these numbers are OEIS A000629, which have exponential generating functions and
. The mean, variance, skewness, and kurtosis excess of the case
are given by
![]() |
![]() |
![]() |
(25) |
![]() |
![]() |
![]() |
(26) |
![]() |
![]() |
![]() |
(27) |
![]() |
![]() |
![]() |
(28) |
The characteristic function is given by
![]() |
(29) |
The first cumulant of the geometric distribution is
![]() |
(30) |
and subsequent cumulants are given by the recurrence relation
![]() |
(31) |
The mean deviation of the geometric distribution is
![]() |
(32) |
where is the floor function.
REFERENCES:
Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, pp. 531-532, 1987.
Sloane, N. J. A. Sequence A000629 in "The On-Line Encyclopedia of Integer Sequences."
Spiegel, M. R. Theory and Problems of Probability and Statistics. New York: McGraw-Hill, p. 118, 1992.
Zwillinger, D. (Ed.). CRC Standard Mathematical Tables and Formulae, 31st ed. Boca Raton, FL: CRC Press, pp. 630-631, 2003.
الاكثر قراءة في الاحتمالات و الاحصاء
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
