المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الاحياء
عدد المواضيع في هذا القسم 10456 موضوعاً
النبات
الحيوان
الأحياء المجهرية
علم الأمراض
التقانة الإحيائية
التقنية الحياتية النانوية
علم الأجنة
الأحياء الجزيئي
علم وظائف الأعضاء
المضادات الحيوية

Untitled Document
أبحث عن شيء أخر
ونواقض الوضوء وبدائله
2024-05-02
معنى مثقال ذرة
2024-05-02
معنى الجار ذي القربى
2024-05-02
{واللاتي‏ تخافون نشوزهن}
2024-05-02
ما هي الكبائر
2024-05-02
شعر لأحمد بن أفلح
2024-05-02

الأفعال التي تنصب مفعولين
23-12-2014
صيغ المبالغة
18-02-2015
الجملة الإنشائية وأقسامها
26-03-2015
اولاد الامام الحسين (عليه السلام)
3-04-2015
معاني صيغ الزيادة
17-02-2015
انواع التمور في العراق
27-5-2016

Recombining Meiotic Chromosomes Are Connected by the Synaptonemal Complex  
  
1813   10:14 صباحاً   date: 15-4-2021
Author : JOCELYN E. KREBS, ELLIOTT S. GOLDSTEIN and STEPHEN T. KILPATRICK
Book or Source : LEWIN’S GENES XII
Page and Part :


Read More
Date: 3-1-2016 1903
Date: 1-12-2015 2302
Date: 6-6-2021 1421

Recombining Meiotic Chromosomes Are Connected by the Synaptonemal Complex


KEY CONCEPTS
- During the early part of meiosis, homologous chromosomes are paired in the synaptonemal complex.
- The mass of chromatin of each homolog is separated from the other by a proteinaceous complex.

A basic paradox in recombination is that the parental chromosomes never seem to be in close enough contact for recombination of DNA to occur. The chromosomes enter meiosis in the form of replicated (sister chromatid) pairs, which are visible as a mass of chromatin.
They pair to form the synaptonemal complex, and it has been assumed for many years that this represents some stage involved with recombination—possibly a necessary preliminary to exchange of DNA. A more recent view is that the synaptonemal complex is a consequence rather than a cause of recombination, but we have yet to define how the structure of the synaptonemal complex relates to molecular contacts between DNA molecules.
Synapsis begins when each chromosome (sister chromatid pair) condenses around a proteinaceous structure called the axial element. The axial elements of corresponding chromosomes then become aligned, and the synaptonemal complex forms as a tripartite structure, in which the axial elements, now called lateral elements, are separated from each other by a central element. FIGURE 1. shows an example.


FIGURE 1. The synaptonemal complex brings chromosomes into juxtaposition.
Reproduced from D. von Wettstein. Proc. Natl. Acad. Sci. USA 68 (1971): 851–855. Photo courtesy of Diter von Wettstein, Washington State University.

Each chromosome at this stage appears as a mass of chromatin bounded by a lateral element. The two lateral elements are separated from each other by a fine, but dense, central element.
The triplet of parallel dense strands lies in a single plane that curves and twists along its axis. The distance between the homologous chromosomes is considerable in molecular terms at more than 200 nm (the diameter of DNA is 2 nm). Thus, a major problem in understanding the role of the complex is that, although it aligns homologous chromosomes, it is far from bringing
homologous DNA molecules into contact.
The only visible link between the two sides of the synaptonemal complex is provided by spherical or cylindrical structures observed in fungi and insects. They lie across the complex and are called nodes or recombination nodules; they occur with the same frequency and distribution as the chiasmata. Their name reflects the possibility that they may prove to be the sites of recombination. From mutations that affect synaptonemal complex formation, we can relate the types of proteins that are involved to its structure. FIGURE 2 presents a molecular view of the synaptonemal complex. Its distinctive structural features are due to two groups of proteins:
-The cohesins form a single linear axis for each pair of sister chromatids from which loops of chromatin extend. This is equivalent to the lateral element of Figure 1. (The cohesins belong to a general group of proteins involved in connecting sister chromatids so that they segregate properly at mitosis or meiosis; they are discussed further in the chapter titled Epigenetics II.)

- The lateral elements are connected by transverse filaments that are equivalent to the central element of Figure 2. These are formed from Zip proteins.


FIGURE 2. Each pair of sister chromatids has an axis made of cohesins. Loops of chromatin project from the axis. The synaptonemal complex is formed by linking together the axes via Zip proteins.
Mutations in proteins that are needed for lateral elements to form are found in the genes coding for cohesins. The cohesins that are used in meiosis include Smc3 (which is also used in mitosis) and Rec8 (which is specific to meiosis and is related to the mitotic cohesin Scc1). The cohesins appear to bind to specific sites along the chromosomes in both mitosis and meiosis. They are likely to play a structural role in chromosome segregation. At meiosis, the formation of the lateral elements may be necessary for the later stages of recombination, because although these mutations do not prevent the formation of DSBs, they do block formation of recombinants.
The zip1 mutation allows lateral elements to form and to become aligned, but they do not become closely synapsed. The N-terminal domain of the Zip1 protein is localized in the central element, but the C-terminal domain is localized in the lateral elements. Two other proteins, Zip2 and Zip3, are also localized with Zip1. The group of Zip proteins forms transverse filaments that connect the lateral elements of the sister chromatid pairs.




علم الأحياء المجهرية هو العلم الذي يختص بدراسة الأحياء الدقيقة من حيث الحجم والتي لا يمكن مشاهدتها بالعين المجرَّدة. اذ يتعامل مع الأشكال المجهرية من حيث طرق تكاثرها، ووظائف أجزائها ومكوناتها المختلفة، دورها في الطبيعة، والعلاقة المفيدة أو الضارة مع الكائنات الحية - ومنها الإنسان بشكل خاص - كما يدرس استعمالات هذه الكائنات في الصناعة والعلم. وتنقسم هذه الكائنات الدقيقة إلى: بكتيريا وفيروسات وفطريات وطفيليات.



يقوم علم الأحياء الجزيئي بدراسة الأحياء على المستوى الجزيئي، لذلك فهو يتداخل مع كلا من علم الأحياء والكيمياء وبشكل خاص مع علم الكيمياء الحيوية وعلم الوراثة في عدة مناطق وتخصصات. يهتم علم الاحياء الجزيئي بدراسة مختلف العلاقات المتبادلة بين كافة الأنظمة الخلوية وبخاصة العلاقات بين الدنا (DNA) والرنا (RNA) وعملية تصنيع البروتينات إضافة إلى آليات تنظيم هذه العملية وكافة العمليات الحيوية.



علم الوراثة هو أحد فروع علوم الحياة الحديثة الذي يبحث في أسباب التشابه والاختلاف في صفات الأجيال المتعاقبة من الأفراد التي ترتبط فيما بينها بصلة عضوية معينة كما يبحث فيما يؤدي اليه تلك الأسباب من نتائج مع إعطاء تفسير للمسببات ونتائجها. وعلى هذا الأساس فإن دراسة هذا العلم تتطلب الماماً واسعاً وقاعدة راسخة عميقة في شتى مجالات علوم الحياة كعلم الخلية وعلم الهيأة وعلم الأجنة وعلم البيئة والتصنيف والزراعة والطب وعلم البكتريا.




جمعيّة العميد وقسم الشؤون الفكريّة تدعوان الباحثين للمشاركة في الملتقى العلمي الوطني الأوّل
الأمين العام المساعد لجامعة الدول العربية السابق: جناح جمعية العميد في معرض تونس ثمين بإصداراته
المجمع العلمي يستأنف فعاليات محفل منابر النور في واسط
برعاية العتبة العباسيّة المقدّسة فرقة العبّاس (عليه السلام) تُقيم معرضًا يوثّق انتصاراتها في قرية البشير بمحافظة كركوك