المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
تـشكيـل اتـجاهات المـستـهلك والعوامـل المؤثـرة عليـها
2024-11-27
النـماذج النـظريـة لاتـجاهـات المـستـهلـك
2024-11-27
{اصبروا وصابروا ورابطوا }
2024-11-27
الله لا يضيع اجر عامل
2024-11-27
ذكر الله
2024-11-27
الاختبار في ذبل الأموال والأنفس
2024-11-27


Least Squares Fitting--Polynomial  
  
1424   01:38 صباحاً   date: 29-3-2021
Author : المرجع الالكتروني للمعلوماتيه
Book or Source : www.almerja.com
Page and Part : ...


Read More
Date: 26-4-2021 1741
Date: 24-2-2021 1536
Date: 23-4-2021 1083

Least Squares Fitting--Polynomial

Generalizing from a straight line (i.e., first degree polynomial) to a kth degree polynomial

 y=a_0+a_1x+...+a_kx^k,

(1)

the residual is given by

 R^2=sum_(i=1)^n[y_i-(a_0+a_1x_i+...+a_kx_i^k)]^2.

(2)

The partial derivatives (again dropping superscripts) are

(partial(R^2))/(partiala_0) = -2sum_(i=1)^(n)[y-(a_0+a_1x+...+a_kx^k)]=0

(3)

(partial(R^2))/(partiala_1) = -2sum_(i=1)^(n)[y-(a_0+a_1x+...+a_kx^k)]x=0

(4)

(partial(R^2))/(partiala_k) = -2sum_(i=1)^(n)[y-(a_0+a_1x+...+a_kx^k)]x^k=0.

(5)

These lead to the equations

a_0n+a_1sum_(i=1)^(n)x_i+...+a_ksum_(i=1)^(n)x_i^k = sum_(i=1)^(n)y_i

(6)

a_0sum_(i=1)^(n)x_i+a_1sum_(i=1)^(n)x_i^2+...+a_ksum_(i=1)^(n)x_i^(k+1) = sum_(i=1)^(n)x_iy_i

(7)

a_0sum_(i=1)^(n)x_i^k+a_1sum_(i=1)^(n)x_i^(k+1)+...+a_ksum_(i=1)^(n)x_i^(2k) = sum_(i=1)^(n)x_i^ky_i

(8)

or, in matrix form

 [n sum_(i=1)^(n)x_i ... sum_(i=1)^(n)x_i^k; sum_(i=1)^(n)x_i sum_(i=1)^(n)x_i^2 ... sum_(i=1)^(n)x_i^(k+1); | | ... |; sum_(i=1)^(n)x_i^k sum_(i=1)^(n)x_i^(k+1) ... sum_(i=1)^(n)x_i^(2k)][a_0; a_1; |; a_k]=[sum_(i=1)^(n)y_i; sum_(i=1)^(n)x_iy_i; |; sum_(i=1)^(n)x_i^ky_i].

(9)

This is a Vandermonde matrix. We can also obtain the matrix for a least squares fit by writing

 [1 x_1 ... x_1^k; 1 x_2 ... x_2^k; | | ... |; 1 x_n ... x_n^k][a_0; a_1; |; a_k]=[y_1; y_2; |; y_n].

(10)

Premultiplying both sides by the transpose of the first matrix then gives

 [1 1 ... 1; x_1 x_2 ... x_n; | | ... |; x_1^k x_2^k ... x_n^k][1 x_1 ... x_1^k; 1 x_2 ... x_2^k; | | ... |; 1 x_n ... x_n^k][a_0; a_1; |; a_k] 
 =[1 1 ... 1; x_1 x_2 ... x_n; | | ... |; x_1^k x_2^k ... x_n^k][y_1; y_2; |; y_n],

(11)

so

 [n sum_(i=1)^(n)x_i ... sum_(i=1)^(n)x_i^k; sum_(i=1)^(n)x_i sum_(i=1)^(n)x_i^2 ... sum_(i=1)^(n)x_i^(k+1); | | ... |; sum_(i=1)^(n)x_i^k sum_(i=1)^(n)x_i^(k+1) ... sum_(i=1)^(n)x_i^(2k)][a_0; a_1; |; a_k]=[sum_(i=1)^(n)y_i; sum_(i=1)^(n)x_iy_i; |; sum_(i=1)^(n)x_i^ky_i].

(12)

As before, given n points (x_i,y_i) and fitting with polynomial coefficients a_0, ..., a_k gives

 [y_1; y_2; |; y_n]=[1 x_1 x_1^2 ... x_1^k; 1 x_2 x_2^2 ... x_2^k; | | | ... |; 1 x_n x_n^2 ... x_n^k][a_0; a_1; |; a_k],

(13)

In matrix notation, the equation for a polynomial fit is given by

 y=Xa.

(14)

This can be solved by premultiplying by the transpose X^(T),

 X^(T)y=X^(T)Xa.

(15)

This matrix equation can be solved numerically, or can be inverted directly if it is well formed, to yield the solution vector

 a=(X^(T)X)^(-1)X^(T)y.

(16)

Setting k=1 in the above equations reproduces the linear solution.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.