المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الاحياء
عدد المواضيع في هذا القسم 10456 موضوعاً
النبات
الحيوان
الأحياء المجهرية
علم الأمراض
التقانة الإحيائية
التقنية الحياتية النانوية
علم الأجنة
الأحياء الجزيئي
علم وظائف الأعضاء
المضادات الحيوية

Untitled Document
أبحث عن شيء أخر
{ان أولى الناس بإبراهيم للذين اتبعوه}
2024-10-31
{ما كان إبراهيم يهوديا ولا نصرانيا}
2024-10-31
أكان إبراهيم يهوديا او نصرانيا
2024-10-31
{ قل يا اهل الكتاب تعالوا الى كلمة سواء بيننا وبينكم الا نعبد الا الله}
2024-10-31
المباهلة
2024-10-31
التضاريس في الوطن العربي
2024-10-31

Positron emission
29-12-2016
العوامل المؤثرة في أحجام المدن- العوامل الجغرافية- شكل ومساحة اقليم المدينة
28/9/2022
نقتدي بعلي (عليه السلام)
16-8-2019
صلاة الطواف
2024-09-17
NITROGEN GAIN  AND  OPTICS
24-3-2016
الطلـب المستقـل والطلـب التابـع Independent & Dependent Demand
1-3-2021

The Eukaryotic Chromosome Is a Segregation Device  
  
2053   11:22 صباحاً   date: 23-3-2021
Author : JOCELYN E. KREBS, ELLIOTT S. GOLDSTEIN and STEPHEN T. KILPATRICK
Book or Source : LEWIN’S GENES XII
Page and Part :

The Eukaryotic Chromosome Is a Segregation Device


KEY CONCEPT
A eukaryotic chromosome is held on the mitotic spindle by the attachment of microtubules to the kinetochore that forms in its centromeric region.

During mitosis, the sister chromatids move to opposite poles of the cell. Their movement depends on the attachment of the chromosome to microtubules, which are connected at their other end to the poles. The microtubules comprise a cellular filamentous system, which is reorganized at mitosis so that they connect the chromosomes to the poles of the cell. The sites in the two regions where microtubule ends are organized—in the vicinity of the centrioles at the poles and at the chromosomes—are called microtubule organizing centers (MTOCs).
FIGURE 1 illustrates the separation of sister chromatids as mitosis proceeds from metaphase to telophase. The region of the chromosome that is responsible for its segregation at mitosis and meiosis is called the centromere. The centromeric region on each sister chromatid is moved along microtubules to the opposite pole.
Opposing this motive force, “glue” proteins called cohesins hold the sister chromatids together. Initially the sister chromatids separate at their centromeres, then they are released completely from one another during anaphase when the cohesins are degraded. The centromere is moved toward the pole during mitosis, and the attached chromosome appears to be “dragged along” behind it. The chromosome therefore provides a device for attaching a large number of genes to the apparatus for division.
The centromere essentially acts as the luggage handle for the entire chromosome and its location typically appears as a constricted region connecting all four chromosome arms,  which shows the sister chromatids at the metaphase stage of mitosis.


FIGURE 1 Chromosomes are pulled to the poles via microtubules that attach at the centromeres. The sister chromatids are held together until anaphase by glue proteins (cohesins). The centromere is shown here in the middle of the chromosome (metacentric), but can be located anywhere along its length, including close to the end (acrocentric) and at the end (telocentric).
The centromere is essential for segregation, as shown by the behavior of chromosomes that have been broken. A single break generates one piece that retains the centromere, and another, an acentric fragment, that lacks it. The acentric fragment does not become attached to the mitotic spindle, and as a result it fails to be included in either of the daughter nuclei. When chromosome movement relies on discrete centromeres, there can be only one centromere per chromosome. When translocations generate chromosomes with more than one centromere, aberrant structures form at mitosis. This is because the two centromeres on the same sister chromatid can be pulled toward different poles, thus breaking the chromosome. In some species, though (such as the nematode Caenorhabditis elegans), the centromeres are holocentric, being diffuse and spread along the entire length of the chromosome.
Species with holocentric chromosomes still make spindle fiber attachments for mitotic chromosome separation, but do not require one and only one regional or point centromere per chromosome.
Most of the molecular analysis of centromeres has been done on canonical point (budding yeast) or regional (fly, mammalian, rice) centromeres.
The regions flanking the centromere often are rich in satellite DNA sequences and display a considerable amount of heterochromatin.
The entire chromosome is condensed, though, so centromeric heterochromatin is not immediately evident in mitotic chromosomes.
Researchers can, however, visualize it by a technique that generates “C-bands.” For example, in FIGURE 2 all the centromeres show as darkly staining regions. Although it is common, heterochromatin cannot be identified around every known centromere, which suggests that it is unlikely to be essential for the division mechanism.


FIGURE 2 C-banding generates intense staining at the centromeres of all chromosomes.
Photo courtesy of Lisa Shaffer, Washington State University, Spokane.

The centromeric chromatin comprises DNA sequences, specialized centromeric histone variants, and a group of specific proteins that are responsible for establishing the structure that attaches the chromosome to the microtubules. This structure is called then kinetochore. It is a darkly staining fibrous object of about 400 nm.
The kinetochore provides a microtubule attachment point on the chromosome.




علم الأحياء المجهرية هو العلم الذي يختص بدراسة الأحياء الدقيقة من حيث الحجم والتي لا يمكن مشاهدتها بالعين المجرَّدة. اذ يتعامل مع الأشكال المجهرية من حيث طرق تكاثرها، ووظائف أجزائها ومكوناتها المختلفة، دورها في الطبيعة، والعلاقة المفيدة أو الضارة مع الكائنات الحية - ومنها الإنسان بشكل خاص - كما يدرس استعمالات هذه الكائنات في الصناعة والعلم. وتنقسم هذه الكائنات الدقيقة إلى: بكتيريا وفيروسات وفطريات وطفيليات.



يقوم علم الأحياء الجزيئي بدراسة الأحياء على المستوى الجزيئي، لذلك فهو يتداخل مع كلا من علم الأحياء والكيمياء وبشكل خاص مع علم الكيمياء الحيوية وعلم الوراثة في عدة مناطق وتخصصات. يهتم علم الاحياء الجزيئي بدراسة مختلف العلاقات المتبادلة بين كافة الأنظمة الخلوية وبخاصة العلاقات بين الدنا (DNA) والرنا (RNA) وعملية تصنيع البروتينات إضافة إلى آليات تنظيم هذه العملية وكافة العمليات الحيوية.



علم الوراثة هو أحد فروع علوم الحياة الحديثة الذي يبحث في أسباب التشابه والاختلاف في صفات الأجيال المتعاقبة من الأفراد التي ترتبط فيما بينها بصلة عضوية معينة كما يبحث فيما يؤدي اليه تلك الأسباب من نتائج مع إعطاء تفسير للمسببات ونتائجها. وعلى هذا الأساس فإن دراسة هذا العلم تتطلب الماماً واسعاً وقاعدة راسخة عميقة في شتى مجالات علوم الحياة كعلم الخلية وعلم الهيأة وعلم الأجنة وعلم البيئة والتصنيف والزراعة والطب وعلم البكتريا.