Read More
Date: 30-1-2021
![]()
Date: 6-9-2020
![]()
Date: 26-1-2020
![]() |
A Liouville number is a transcendental number which has very close rational number approximations. An irrational number is called a Liouville number if, for each
, there exist integers
and
such that
![]() |
Note that the first inequality is true by definition, since it follows immediately from the fact that is irrational and hence cannot be equal to
for any values of
and
.
Liouville's constant is an example of a Liouville number and is sometimes called "the" Liouville number or "Liouville's number" (Wells 1986, p. 26). Mahler (1953) proved that is not a Liouville number.
REFERENCES:
Apostol, T. M. Modular Functions and Dirichlet Series in Number Theory, 2nd ed. New York: Springer-Verlag, p. 147, 1997.
Mahler, K. "On the Approximation of ." Nederl. Akad. Wetensch. Proc. Ser. A. 56/Indagationes Math. 15, 30-42, 1953.
Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, 1986.
|
|
لخفض ضغط الدم.. دراسة تحدد "تمارين مهمة"
|
|
|
|
|
طال انتظارها.. ميزة جديدة من "واتساب" تعزز الخصوصية
|
|
|
|
|
عوائل الشهداء: العتبة العباسية المقدسة سبّاقة في استذكار شهداء العراق عبر فعالياتها وأنشطتها المختلفة
|
|
|