المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
الحرارة Temperature
2024-11-25
الشمام Sweet melon (من الزراعة الى الحصاد)
2024-11-25
إثر التبدل المناخي على النشاطات الأخرى Climatic Effects on other Activates
2024-11-25
أسيا Asia
2024-11-25
الآثار السلبية للنشاط البشري على المناخ The Negative Effects Of Humans Activity on Climate
2024-11-25
الإشعاع الشمسي Solar Radiation
2024-11-25

شروط الحــلول
2-4-2016
كنيته والقابه وصفاته
9-4-2016
آثـار فـرض الضـرائـب على الاربـاح profits Taxes
2-7-2022
زيارة الأربعين والمدينة الفاضلة
2024-08-24
الاراميون
23-10-2016
Comparing covalent bonds with other bonds
3-1-2017

Frobenius Pseudoprime  
  
810   05:09 مساءً   date: 24-1-2021
Author : Grantham, J
Book or Source : "Frobenius Pseudoprimes." 1996. https://www.pseudoprime.com/pseudo1.ps.
Page and Part : ...


Read More
Date: 8-3-2020 616
Date: 11-8-2020 559
Date: 1-10-2020 613

Frobenius Pseudoprime

Let f(x) be a monic polynomial of degree d with discriminant Delta. Then an odd integer n with (n,f(0)Delta)=1 is called a Frobenius pseudoprime with respect to f(x) if it passes a certain algorithm given by Grantham (1996). A Frobenius pseudoprime with respect to a polynomial f(x) in Z[x] is then a composite Frobenius probably prime with respect to the polynomial x-a.

While 323 is the first Lucas pseudoprime with respect to the Fibonacci polynomial x^2-x-1, the first Frobenius pseudoprime is 5777. If f(x)=x^3-rx^2+sx-1, then any Frobenius pseudoprime n with respect to f(x) is also a Perrin pseudoprime. Grantham (1997) gives a test based on Frobenius pseudoprimes which is passed by composite numbers with probability at most 1/7710.


REFERENCES:

Grantham, J. "Frobenius Pseudoprimes." 1996. https://www.pseudoprime.com/pseudo1.ps.

Grantham, J. "A Frobenius Probable Prime Test with High Confidence." 1997. https://www.pseudoprime.com/pseudo2.ps.

Grantham, J. "Pseudoprimes/Probable Primes." https://www.pseudoprime.com/pseudo.html.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.