Demlo Number
المؤلف:
Kaprekar, D. R.
المصدر:
"On Wonderful Demlo Numbers." Math. Student 6
الجزء والصفحة:
...
11-1-2021
1228
Demlo Number
The initially palindromic numbers 1, 121, 12321, 1234321, 123454321, ... (OEIS A002477). For the first through ninth terms, the sequence is given by the generating function
 |
(1)
|
(Plouffe 1992, Sloane and Plouffe 1995).
The definition of this sequence is slightly ambiguous from the tenth term on, but the most common convention follows from the following observation. The sequences of consecutive and reverse digits
and
, respectively, are given by
for
, so the first few Demlo numbers are given by
But, amazingly, this is just the square of the
th repunit
, i.e.,
 |
(6)
|
for
, and the squares of the first few repunits are precisely the Demlo numbers:
,
,
, ... (OEIS A002275 and A002477). It is therefore natural to use (6) as the definition for Demlo numbers
with
, giving 1, 121, ..., 12345678987654321, 1234567900987654321, 123456790120987654321, ....

The equality
for
also follows immediately from schoolbook multiplication, as illustrated above. This follows from the algebraic identity
 |
(7)
|
The sums of digits of the Demlo numbers for
are given by
 |
(8)
|
More generally, for
, 2, ..., the sums of digits are 1, 4, 9, 16, 25, 36, 49, 64, 81, 82, 85, 90, 97, 106, ... (OEIS A080151). The values of
for which these are square are 1, 2, 3, 4, 5, 6, 7, 8, 9, 36, 51, 66, 81, ... (OEIS A080161), corresponding to the Demlo numbers 1, 121, 12321, 1234321, 123454321, 12345654321, 1234567654321, 123456787654321, 12345678987654321, 12345679012345679012345679012345678987654320987654320987654320987654321, ... (OEIS A080162).
REFERENCES:
Kaprekar, D. R. "On Wonderful Demlo Numbers." Math. Student 6, 68-70, 1938.
Plouffe, S. "Approximations de Séries Génératrices et quelques conjectures." Montréal, Canada: Université du Québec à Montréal, Mémoire de Maîtrise, UQAM, 1992.
Sloane, N. J. A. Sequences A002275, A002477/M5386, A080151, A080161, and A080162 in "The On-Line Encyclopedia of Integer Sequences."
Sloane, N. J. A. and Plouffe, S. The Encyclopedia of Integer Sequences. San Diego: Academic Press, 1995.
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة