Read More
Date: 27-9-2020
![]()
Date: 27-9-2020
![]()
Date: 6-2-2020
![]() |
A number with an even number
of digits formed by multiplying a pair of
-digit numbers (where the digits are taken from the original number in any order)
and
together. Pairs of trailing zeros are not allowed. If
is a vampire number, then
and
are called its "fangs." Examples of vampire numbers include
![]() |
![]() |
![]() |
(1) |
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
(OEIS A014575). The 8-digit vampire numbers are 10025010, 10042510, 10052010, 10052064, 10081260, ... (OEIS A048938) and the 10-digit vampire numbers are 1000174288, 1000191991, 1000198206, 1000250010, ... (OEIS A048939). The numbers of -digit vampires are 0, 7, 148, 3228, ... (OEIS A048935).
Vampire numbers having two distinct pairs of fangs include
![]() |
![]() |
![]() |
(8) |
![]() |
![]() |
![]() |
(9) |
![]() |
![]() |
![]() |
(10) |
(OEIS A048936).
Vampire numbers having three distinct pairs of fangs include
![]() |
(11) |
(OEIS A048937).
The first vampire numbers with four pairs of fangs are
![]() |
![]() |
![]() |
(12) |
![]() |
![]() |
![]() |
(13) |
![]() |
![]() |
![]() |
(14) |
![]() |
![]() |
![]() |
(15) |
and
![]() |
![]() |
![]() |
(16) |
![]() |
![]() |
![]() |
(17) |
![]() |
![]() |
![]() |
(18) |
![]() |
![]() |
![]() |
(19) |
and the first vampire number with five pairs of fangs is
![]() |
![]() |
![]() |
(20) |
![]() |
![]() |
![]() |
(21) |
![]() |
![]() |
![]() |
(22) |
![]() |
![]() |
![]() |
(23) |
![]() |
![]() |
![]() |
(24) |
(J. K. Andersen, pers. comm., May 4, 2003).
General formulas can be constructed for special classes of vampires, such as the fangs
![]() |
![]() |
![]() |
(25) |
![]() |
![]() |
![]() |
(26) |
giving the vampire
![]() |
![]() |
![]() |
(27) |
![]() |
![]() |
![]() |
(28) |
![]() |
![]() |
![]() |
(29) |
![]() |
![]() |
![]() |
(30) |
where denotes
with the digits reversed (Roush and Rogers 1997-1998).
Pickover (1995) also defines pseudovampire numbers, in which the multiplicands have different numbers of digits.
REFERENCES:
Anderson, J. K. "Vampire Numbers." https://hjem.get2net.dk/jka/math/vampires/.
Childs, J. "Vampire Numbers!" https://www.grenvillecc.ca/faculty/jchilds/vampire.htm.
Childs, J. "Vampire Numbers! Part 2." https://www.grenvillecc.ca/faculty/jchilds/vampire2.htm.
Childs, J. "Vampire Numbers--Information Summary--Part 3." https://www.grenvillecc.ca/faculty/jchilds/vampire3.htm.
Pickover, C. A. "Vampire Numbers." Ch. 30 in Keys to Infinity. New York: Wiley, pp. 227-231, 1995.
Pickover, C. A. "Vampire Numbers." Theta 9, 11-13, Spring 1995.
Pickover, C. A. "Interview with a Number." Discover 16, 136, June 1995.
Rivera, C. "Problems & Puzzles: Puzzle 199-The Prime-Vampire Numbers." https://www.primepuzzles.net/puzzles/puzz_199.htm.
Roush, F.W.; Rogers, D. G. "Tame Vampires." Math. Spectrum 30, 37-39, 1997-1998.
|
|
نصائح للحد من خطر قصر النظر عند الأطفال
|
|
|
|
|
دولة عربية تستعين بالروبوتات لاكتشاف أعطال أنابيب النفط
|
|
|
|
|
المجمَع العلمي يقيم ختمة قرآنية في جامعتي الكوفة والبيان
|
|
|