المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر

التفسير في اللغة
24-04-2015
Vitamin A : Functions
12-12-2021
Captain Kirk’s infinitive
11-3-2022
 تغيير هدف المنتج
6-3-2016
أحمد بن محمد بن هاشم بن خلف ابن عمرو بن سعيد
10-04-2015
Glycitin
28-6-2018

Sort-Then-Add Sequence  
  
902   04:08 مساءً   date: 19-11-2020
Author : Sloane, N. J. A.
Book or Source : Sequences A033861, A033862, A033863, and A070196 in "The On-Line Encyclopedia of Integer Sequences."a
Page and Part : ...


Read More
Date: 1-8-2020 1552
Date: 24-1-2020 764
Date: 2-3-2020 503

Sort-Then-Add Sequence

The sequence produced by sorting the digits of a number and adding them to the previous number. The values starting with n=1, 2, ... are 2, 4, 6, 8, 10, 12, 14, 16, 18, 11, 22, 24, ... (OEIS A070196).

If the sorting-then-adding algorithm is applied iteratively until a sorted number is obtained, then for n=1, 2, ..., the algorithm terminates on 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 33, ... (OEIS A033862). The first few numbers not known to terminate are 316, 452, 697, 1376, 2743, 5090, ... (OEIS A033861). The least numbers of sort-then-add persistence n=1, 2, ..., are 1, 10, 65, 64, 175, 98, 240, 325, 302, 387, 198, 180, 550, ... (OEIS A033863).


REFERENCES:

Sloane, N. J. A. Sequences A033861, A033862, A033863, and A070196 in "The On-Line Encyclopedia of Integer Sequences."a




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.