

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Narcissistic Number
المؤلف:
Corning, T.
المصدر:
"Exponential Digital Invariants." https://members.aol.com/tec153/Edi4web/Edi.html
الجزء والصفحة:
...
16-11-2020
1648
Narcissistic Number
An
-digit number that is the sum of the
th powers of its digits is called an
-narcissistic number. It is also sometimes known as an Armstrong number, perfect digital invariant (Madachy 1979), or plus perfect number. Hardy (1993) wrote, "There are just four numbers, after unity, which are the sums of the cubes of their digits:
,
,
, and
. These are odd facts, very suitable for puzzle columns and likely to amuse amateurs, but there is nothing in them which appeals to the mathematician." Narcissistic numbers therefore generalize these "unappealing" numbers to other powers (Madachy 1979, p. 164).
The smallest example of a narcissistic number other than the trivial 1-digit numbers is
![]() |
(1) |
The first few are given by 1, 2, 3, 4, 5, 6, 7, 8, 9, 153, 370, 371, 407, 1634, 8208, 9474, 54748, ... (OEIS A005188).
It can easily be shown that base-10
-narcissistic numbers can exist only for
, since
![]() |
(2) |
for
. In fact, as summarized in the table below, a total of 88 narcissistic numbers exist in base 10, as proved by D. Winter in 1985 and verified by D. Hoey. T. A. Mendes Oliveira e Silva gave the full sequence in a posting (Article 42889) to sci.math on May 9, 1994. These numbers exist for only 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 16, 17, 19, 20, 21, 23, 24, 25, 27, 29, 31, 32, 33, 34, 35, 37, 38, and 39 (OEIS A114904) digits, and the series of smallest narcissistic numbers of
digits are 0, (none), 153, 1634, 54748, 548834, ... (OEIS A014576).
![]() |
base-10 -narcissistic numbers |
| 1 | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 |
| 3 | 153, 370, 371, 407 |
| 4 | 1634, 8208, 9474 |
| 5 | 54748, 92727, 93084 |
| 6 | 548834 |
| 7 | 1741725, 4210818, 9800817, 9926315 |
| 8 | 24678050, 24678051, 88593477 |
| 9 | 146511208, 472335975, 534494836, 912985153 |
| 10 | 4679307774 |
| 11 | 32164049650, 32164049651, 40028394225, 42678290603, 44708635679, 49388550606, 82693916578, 94204591914 |
| 14 | 28116440335967 |
| 16 | 4338281769391370, 4338281769391371 |
| 17 | 21897142587612075, 35641594208964132, 35875699062250035 |
| 19 | 1517841543307505039, 3289582984443187032, 4498128791164624869, 4929273885928088826 |
| 20 | 63105425988599693916 |
| 21 | 128468643043731391252, 449177399146038697307 |
| 23 | 21887696841122916288858, 27879694893054074471405, 27907865009977052567814, 28361281321319229463398, 35452590104031691935943 |
| 24 | 174088005938065293023722, 188451485447897896036875, 239313664430041569350093 |
| 25 | 1550475334214501539088894, 1553242162893771850669378, 3706907995955475988644380, 3706907995955475988644381, 4422095118095899619457938 |
| 27 | 121204998563613372405438066, 121270696006801314328439376, 128851796696487777842012787, 174650464499531377631639254, 177265453171792792366489765 |
| 29 | 14607640612971980372614873089, 19008174136254279995012734740, 19008174136254279995012734741, 23866716435523975980390369295 |
| 31 | 1145037275765491025924292050346, 1927890457142960697580636236639, 2309092682616190307509695338915 |
| 32 | 17333509997782249308725103962772 |
| 33 | 186709961001538790100634132976990, 186709961001538790100634132976991 |
| 34 | 1122763285329372541592822900204593 |
| 35 | 12639369517103790328947807201478392, 12679937780272278566303885594196922 |
| 37 | 1219167219625434121569735803609966019 |
| 38 | 12815792078366059955099770545296129367 |
| 39 | 115132219018763992565095597973971522400, 115132219018763992565095597973971522401 |
The table below gives the first few base-
narcissistic numbers for small bases
. A table of the largest known narcissistic numbers in various bases is given by Pickover (1995) and a tabulation of narcissistic numbers in various bases is given by Corning.
![]() |
OEIS | base- narcissistic numbers |
| 2 | 1 | |
| 3 | 1, 2, 5, 8, 17 | |
| 4 | A010344 | 1, 2, 3, 28, 29, 35, 43, 55, 62, 83, 243 |
| 5 | A010346 | 1, 2, 3, 4, 13, 18, 28, 118, 289, 353, 419, 4890, 4891, 9113 |
| 6 | A010348 | 1, 2, 3, 4, 5, 99, 190, 2292, 2293, 2324, 3432, 3433, 6197, ... |
| 7 | A010350 | 1, 2, 3, 4, 5, 6, 10, 25, 32, 45, 133, 134, 152, 250, 3190, ... |
| 8 | A010354 | 1, 2, 3, 4, 5, 6, 7, 20, 52, 92, 133, 307, 432, 433, ... |
| 9 | A010353 | 1, 2, 3, 4, 5, 6, 7, 8, 41, 50, 126, 127, 468, ... |
A closely related set of numbers generalize the narcissistic number to
-digit numbers which are the sums of any single power of their digits. For example, 4150 is a 4-digit number which is the sum of fifth powers of its digits. Since the number of digits is not equal to the power to which they are taken for such numbers, they are not narcissistic numbers. The smallest numbers which are sums of any single positive power of their digits are 1, 2, 3, 4, 5, 6, 7, 8, 9, 153, 370, 371, 407, 1634, 4150, 4151, 8208, 9474, ... (OEIS A023052), with powers 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 4, 5, 5, 4, 4, ... (OEIS A046074).
Another set of related numbers are the Münchhausen numbers, which are numbers equal to the sum of their digits raised to each digit's power.
The smallest numbers which are equal to the
th powers of their digits for
, 4, ..., are 153, 1634, 4150, 548834, 1741725, ... (OEIS A003321). The
-digit numbers equal to the sum of
th powers of their digits (a finite sequence) are called Armstrong numbers or plus perfect number and are given by 1, 2, 3, 4, 5, 6, 7, 8, 9, 153, 370, 371, 407, 1634, 8208, 9474, 54748, ... (OEIS A005188).
If the sum-of-
th-powers-of-digits operation applied iteratively to a number
eventually returns to
, the smallest number in the sequence is called a
-recurring digital invariant.
The numbers that are equal to the sum of consecutive powers of their digits are given by 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 89, 135, 175, 518, 598, 1306, 1676, 2427, 2646798 (OEIS A032799), e.g.,
![]() |
(3) |
The values obtained by summing the
th powers of the digits of a
-digit number
for
, 2, ... are 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 5, 10, 17, 26, ... (OEIS A101337).
REFERENCES:
Corning, T. "Exponential Digital Invariants." https://members.aol.com/tec153/Edi4web/Edi.html
Deimel, L. E. Jr. and Jones, M. T. "Finding Pluperfect Digital Invariants: Techniques, Results and Observations." J. Recr. Math. 14, 97-108, 1981.
Hardy, G. H. A Mathematician's Apology. New York: Cambridge University Press, p. 105, 1993.
Heinz, H. "Narcissistic Numbers." https://www.magic-squares.net/narciss.htm.
Keith, M. "Wild Narcissistic Numbers." https://users.aol.com/s6sj7gt/mikewild.htm.
Lamoitier, J. P. "Fifty Basic Exercises." SYBEX Inc., 1981.
Madachy, J. S. "Narcissistic Numbers." Madachy's Mathematical Recreations. New York: Dover, pp. 163-173, 1979.
Pickover, C. A. Keys to Infinity. New York: Wiley, pp. 169-170, 1995.
Pickover, C. A. "The Latest Gossip on Narcissistic Numbers." Ch. 88 in Wonders of Numbers: Adventures in Mathematics, Mind, and Meaning. Oxford, England: Oxford University Press, pp. 204-205, 2001.
Rivera, C. "Problems & Puzzles: Puzzle 015-Narcissistic and Handsome Primes." https://www.primepuzzles.net/puzzles/puzz_015.htm.
Roberts, J. The Lure of the Integers. Washington, DC: Math. Assoc. Amer., p. 35, 1992.
Rumney, M. "Digital Invariants." Recr. Math. Mag. No. 12, 6-8, Dec. 1962.
Sloane, N. J. A. Sequences A005188/M0488, A003321/M5403, A010344, A010346, A010348, A010350, A010353, A010354, A014576, A023052, A032799, A046074, A101337, and A114904 in "The On-Line Encyclopedia of Integer Sequences."
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية




-narcissistic numbers
narcissistic numbers
قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)