Read More
Date: 6-9-2020
1616
Date: 4-1-2021
1380
Date: 20-11-2019
616
|
The longest increasing (contiguous) subsequence of a given sequence is the subsequence of increasing terms containing the largest number of elements. For example, the longest increasing subsequence of the permutation is .
It can be coded in the Wolfram Language as follows.
<<Combintorica`
LongestContinguousIncreasingSubsequence[p_] :=
Last[
Split[Sort[Runs[p]], Length[#1] >= Length[#2]&]
]
REFERENCES:
Pemmaraju, S. and Skiena, S. "Longest Increasing Subsequences." §4.4.6 in Computational Discrete Mathematics: Combinatorics and Graph Theory in Mathematica. Cambridge, England: Cambridge University Press, pp. 170-172, 2003.
Skiena, S. "Longest Increasing Subsequences." §2.3.6 in Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, pp. 73-75, 1990.
|
|
لمكافحة الاكتئاب.. عليك بالمشي يوميا هذه المسافة
|
|
|
|
|
تحذيرات من ثوران بركاني هائل قد يفاجئ العالم قريبا
|
|
|
|
|
العتبة العباسية تشارك في معرض النجف الأشرف الدولي للتسوق الشامل
|
|
|