تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Affinely Extended Real Numbers
المؤلف:
Goldberg, D.
المصدر:
"What Every Computer Scientist Should Know About Floating-Point Arithmetic." ACM Comput. Surv. 23, 5-48, March 1991. https://docs.sun.com/source/806-3568/ncg_goldberg.html.
الجزء والصفحة:
...
18-10-2020
910
Affinely Extended Real Numbers
The set {+infty,-infty}" src="https://mathworld.wolfram.com/images/equations/AffinelyExtendedRealNumbers/Inline1.gif" style="height:15px; width:90px" /> obtained by adjoining two improper elements to the set
of real numbers is normally called the set of (affinely) extended real numbers. Although the notation for this set is not completely standardized,
is commonly used. The set may also be written in interval notation as
. With an appropriate topology,
is the two-point compactification (or affine closure) of
. The improper elements, the affine infinities
and
, correspond to ideal points of the number line. Note that these improper elements are not real numbers, and that this system of extended real numbers is not a field.
Instead of writing , many authors write simply
. However, the compound symbol
will be used here to represent the positive improper element of
, allowing the individual symbol
to be used unambiguously to represent the unsigned improper element of
, the one-point compactification (or projective closure) of
.
A very important property of , which
lacks, is that every subset
of
has an infimum (greatest lower bound) and a supremum (least upper bound). In particular,
and, if
is unbounded above, then
. Similarly,
and, if
is unbounded below, then
.
Order relations can be extended from to
, and arithmetic operations can be partially extended. For
,
![]() |
(1) |
![]() |
(2) |
![]() |
(3) |
![]() |
(4) |
![]() |
(5) |
![]() |
(6) |
![]() |
(7) |
![]() |
(8) |
However, the expressions ,
, and
are undefined.
The above statements which define results of arithmetic operations on may be considered as abbreviations of statements about determinate limit forms. For example,
may be considered as an abbreviation for "If
increases without bound, then
decreases without bound." Most descriptions of
also make a statement concerning the products of the improper elements and 0, but there is no consensus as to what that statement should be. Some authors (e.g., Kolmogorov 1995, p. 193) state that, like
and
,
and
should be undefined, presumably because of the indeterminate status of the corresponding limit forms. Other authors (such as McShane 1983, p. 2) accept
, at least as a convention which is useful in certain contexts.
Many results for other operations and functions can be obtained by considering determinate limit forms. For example, a partial extension of the function can be obtained for
as
![]() |
![]() |
(9) |
|
![]() |
![]() |
(10) |
|
![]() |
![]() |
(11) |
The functions and
can be fully extended to
, with
![]() |
![]() |
![]() |
(12) |
![]() |
![]() |
![]() |
(13) |
![]() |
![]() |
![]() |
(14) |
![]() |
![]() |
![]() |
(15) |
Some other important functions (e.g., and
) can be extended to
, while others (e.g.,
,
) cannot. Evaluations of expressions involving
and
, derived by considering determinate limit forms, are routinely used by computer algebra languages such as the Wolfram Language when performing simplifications.
Floating-point arithmetic, with its two signed infinities, is intended to approximate arithmetic on (Goldberg 1991, pp. 21-22).
REFERENCES:
Goldberg, D. "What Every Computer Scientist Should Know About Floating-Point Arithmetic." ACM Comput. Surv. 23, 5-48, March 1991. https://docs.sun.com/source/806-3568/ncg_goldberg.html.
Kolmogorov, N. A. "Infinity." Encyclopaedia of Mathematics: An Updated and Annotated Translation of the Soviet "Mathematical Encyclopaedia," 2nd ed., Vol. 3. (Managing Ed. M. Hazewinkel). Dordrecht, Netherlands: Reidel, 1995.
McShane, E. J. Unified Integration. Orlando, FL: Academic Press, p. 2, 1983.
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
