

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Mangoldt Function
المؤلف:
Costa Pereira, N.
المصدر:
"Estimates for the Chebyshev Function psi(x)-theta(x)." Math. Comput. 44
الجزء والصفحة:
...
18-8-2020
3249
Mangoldt Function

The Mangoldt function is the function defined by
|
(1) |
sometimes also called the lambda function.
has the explicit representation
![]() |
(2) |
where
denotes the least common multiple. The first few values of
for
, 2, ..., plotted above, are 1, 2, 3, 2, 5, 1, 7, 2, ... (OEIS A014963).
The Mangoldt function is implemented in the Wolfram Language as MangoldtLambda[n].
It satisfies the divisor sums
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
where
is the Möbius function (Hardy and Wright 1979, p. 254).
The Mangoldt function is related to the Riemann zeta function
by
![]() |
(7) |
where
(Hardy 1999, p. 28; Krantz 1999, p. 161; Edwards 2001, p. 50).

The summatory Mangoldt function, illustrated above, is defined by
![]() |
(8) |
where
is the Mangoldt function, and is also known as the second Chebyshev function (Edwards 2001, p. 51).
is given by the so-called explicit formula
![]() |
(9) |
for
and
not a prime or prime power (Edwards 2001, pp. 49, 51, and 53), and the sum is over all nontrivial zeros
of the Riemann zeta function
, i.e., those in the critical strip so
(Montgomery 2001), and interpreted as
![]() |
(10) |
Vallée Poussin's version of the prime number theorem states that
![]() |
(11) |
for some
(Davenport 1980, Vardi 1991). The prime number theorem is equivalent to the statement that
![]() |
(12) |
as
(Dusart 1999).
Von Mangoldt proved his formula 30 years after Riemann's paper, which contained a related formula that inspired von Mangoldt's. Von Mangoldt's formula was then used to prove the prime number theorem in the equivalent form
![]() |
(13) |
The Riemann hypothesis is equivalent to
![]() |
(14) |
(Davenport 1980, p. 114; Vardi 1991).
Vardi (1991, p. 155) also gives the interesting formula
![]() |
(15) |
where
is the floor function and
is a factorial.
REFERENCES:
Costa Pereira, N. "Estimates for the Chebyshev Function
." Math. Comput. 44, 211-221, 1985.
Costa Pereira, N. "Corrigendum: Estimates for the Chebyshev Function
." Math. Comput. 48, 447, 1987.
Costa Pereira, N. "Elementary Estimates for the Chebyshev Function
and for the Möbius Function
." Acta Arith. 52, 307-337, 1989.
Davenport, H. Multiplicative Number Theory, 2nd ed. New York: Springer-Verlag, p. 104, 1980.
Dusart, P. "Inégalités explicites pour
,
,
et les nombres premiers." C. R. Math. Rep. Acad. Sci. Canad 21, 53-59, 1999.
Edwards, H. M. "Derivation of von Mangoldt's Formula for
." §3.2 in Riemann's Zeta Function. New York: Dover, pp. 50-54, 2001.
Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, p. 28, 1999.
Hardy, G. H. and Wright, E. M. An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, 1979.
Havil, J. Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, p. 109, 2003.
Krantz, S. G. "The Lambda Function" and "Relation of the Zeta Function to the Lambda Function." §13.2.10 and 13.2.11 in Handbook of Complex Variables. Boston, MA: Birkhäuser, p. 161, 1999.
Montgomery, H. L. "Harmonic Analysis as Found in Analytic Number Theory." In Twentieth Century Harmonic Analysis--A Celebration. Proceedings of the NATO Advanced Study Institute Held in Il Ciocco, July 2-15, 2000 (Ed. J. S. Byrnes). Dordrecht, Netherlands: Kluwer, pp. 271-293, 2001.
Rosser, J. B. and Schoenfeld, L. "Sharper Bounds for Chebyshev Functions
and
." Math. Comput. 29, 243-269, 1975.
Schoenfeld, L. "Sharper Bounds for Chebyshev Functions
and
. II." Math. Comput. 30, 337-360, 1976.
Sloane, N. J. A. Sequence A014963 in "The On-Line Encyclopedia of Integer Sequences."
Vardi, I. Computational Recreations in Mathematica. Reading, MA: Addison-Wesley, pp. 146-147, 152-153, and 249, 1991.
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية























قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)