Elliptic Exponential Function
المؤلف:
Wolfram, S.
المصدر:
The Mathematica Book, 5th ed. Champaign, IL: Wolfram Media
الجزء والصفحة:
p. 788
8-7-2020
1528
Elliptic Exponential Function
The elliptic exponential function
gives the value of
in the elliptic logarithm
for
and
real such that
.
It is implemented in the Wolfram Language as EllipticExp[u,
{" src="https://mathworld.wolfram.com/images/equations/EllipticExponentialFunction/Inline6.gif" style="height:15px; width:5px" />a, b
}" src="https://mathworld.wolfram.com/images/equations/EllipticExponentialFunction/Inline7.gif" style="height:15px; width:5px" />], which returns
together with the superfluous parameter
which multiplies the above integral by a factor of
.



The top plot above shows
(red),
(violet), and
(blue) for
. The other plots show
in the complex plane.


The plots above show
in the complex plane for
.
As can be seen from the plots, the elliptic exponential function is doubly periodic in the complex plane.
REFERENCES:
Wolfram, S. The Mathematica Book, 5th ed. Champaign, IL: Wolfram Media, p. 788, 2003.
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة