المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
نظرية الغبار البركاني والغبار الذي يسببه الإنسان Volcanic and Human Dust
2024-11-24
نظرية البقع الشمسية Sun Spots
2024-11-24
المراقبة
2024-11-24
المشارطة
2024-11-24
الحديث المرسل والمنقطع والمعضل.
2024-11-24
اتّصال السند.
2024-11-24

انعكاس الأشعة السينية من شبيكة بلورية
2023-09-21
مـعادلـة سنجـر Singer للـنمو الاقتصـادي (معايير الدخل)
7-12-2019
Image photometry: Photographic photometry
27-8-2020
emergentism (n.)
2023-08-22
ذم الدنيا
11-7-2021
السيدة فاطمة شبه السيدة مريم
2024-10-29

Sphere Packing  
  
1581   05:43 مساءً   date: 13-2-2020
Author : Barlow, W.
Book or Source : "Probable Nature of the Internal Symmetry of Crystals." Nature 29
Page and Part : ...


Read More
Date: 26-8-2020 603
Date: 30-1-2021 941
Date: 22-2-2020 1474

Sphere Packing

 

Define the packing density eta of a packing of spheres to be the fraction of a volume filled by the spheres. In three dimensions, there are three periodic packings for identical spheres: cubic lattice, face-centered cubic lattice, and hexagonal lattice. It was hypothesized by Kepler in 1611 that close packing (cubic or hexagonal, which have equivalent packing densities) is the densest possible, and this assertion is known as the Kepler conjecture. The problem of finding the densest packing of spheres (not necessarily periodic) is therefore known as the Kepler problem, where

 eta_(Kepler)=eta_(FCC)=eta_(HCP)=pi/(3sqrt(2)) approx 74.048%

(OEIS A093825; Steinhaus 1999, p. 202; Wells 1986, p. 29; Wells 1991, p. 237).

In 1831, Gauss managed to prove that the face-centered cubic is the densest lattice packing in three dimensions (Conway and Sloane 1993, p. 9), but the general conjecture remained open for many decades.

While the Kepler conjecture is intuitively obvious, the proof remained surprisingly elusive. Rogers (1958), a well-known researcher on the problem, remarked that "many mathematicians believe, and all physicists know" that the actual answer is 74.048% (Conway and Sloane 1993, p. 3). For packings in three dimensions, C. A. Rogers (1958) showed that the maximum possible packing density eta_(max) satisfies

 eta_(max)<sqrt(18)(cos^(-1)1/3-1/3pi) approx 77.96355700%

(Le Lionnais 1983), and this result was subsequently improved to 77.844% (Lindsey 1986), then 77.836% (Muder 1988). A proof of the full conjecture was finally accomplished in a series of papers by Hales culminating in 1998.

Interestingly, the packing density in ellipsoid packing can exceed eta_(Kepler).

The maximum number of equivalent spheres (or n-dimensional hyperspheres) which can touch an equivalent sphere (hypersphere) without intersections is called the n-dimensional kissing number.

The packing densities for several types of sphere packings are summarized in the following table. In a 1972 personal communication to Martin Gardner, Ulam conjectured that in their densest packing, spheres allow more empty space than the densest packing of any other identical convex solids (Gardner 2001, p. 135).

packing analytic eta eta reference
loosest possible -- 0.0555 Gardner (1966)
tetrahedral lattice (pisqrt(3))/(16) 0.3401 Hilbert and Cohn-Vossen (1999, pp. 48-50)
cubic lattice pi/6 0.5236  
hexagonal lattice pi/(3sqrt(3)) 0.6046  
random -- 0.6400 Jaeger and Nagel (1992)
face-centered cubic close packing pi/(3sqrt(2)) 0.7405 Steinhaus (1999, p. 202), Wells (1986, p. 29; 1991, p. 237)
body-centered cubic close packing (pisqrt(3))/8 0.6801  
hexagonal close packing pi/(3sqrt(2)) 0.7405 Steinhaus (1999, p. 202), Wells (1986, p. 29; 1991, p. 237)

The rigid packing with lowest density known has eta approx 0.0555 (Gardner 1966), significantly lower than that reported by Hilbert and Cohn-Vossen (1999, p. 51). To be rigid, each sphere must touch at least four others, and the four contact points cannot be in a single hemisphere or all on one equator.

Hilbert and Cohn-Vossen (1999, pp. 48-50) consider a tetrahedral lattice packing in which each sphere touches four neighbors and the density is pisqrt(3)/16 approx 0.3401. This is the lattice formed by carbon atoms in a diamond (Conway and Sloane 1993, p. 113).

Random close packing of spheres in three dimensions gives packing densities in the range 0.06 to 0.65 (Jaeger and Nagel 1992, Torquato et al. 2000). Compressing a random packing gives polyhedra with an average of 13.3 faces (Coxeter 1958, 1961).

For sphere packing inside a cube, see Goldberg (1971), Schaer (1966), Gensane (2004), and Friedman. The results of Gensane (2004) improve those of Goldberg for n=11, 12, and all n from n=15 to n=26 except for n=18 and are almost certainly optimal.


REFERENCES:

Barlow, W. "Probable Nature of the Internal Symmetry of Crystals." Nature 29, 186-188, 1883.

Conway, J. H. and Sloane, N. J. A. Sphere Packings, Lattices, and Groups, 2nd ed. New York: Springer-Verlag, 1993.

Coxeter, H. S. M. "Close-Packing and so Forth." Illinois J. Math. 2, 746-758, 1958.

Coxeter, H. S. M. "Close Packing of Equal Spheres." Section 22.4 in Introduction to Geometry, 2nd ed. New York: Wiley, pp. 405-411, 1961.

Coxeter, H. S. M. "The Problem of Packing a Number of Equal Nonoverlapping Circles on a Sphere." Trans. New York Acad. Sci. 24, 320-331, 1962.

Critchlow, K. Order in Space: A Design Source Book. New York: Viking Press, 1970.

Cundy, H. and Rollett, A. Mathematical Models, 3rd ed. Stradbroke, England: Tarquin Pub., pp. 195-197, 1989.

Eppstein, D. "Covering and Packing." http://www.ics.uci.edu/~eppstein/junkyard/cover.html.

Fejes Tóth, G. "Über einen geometrischen Satz." Math. Z. 46, 78-83, 1940.

Fejes Tóth, G. Lagerungen in der Ebene, auf der Kugel und in Raum, 2nd ed. Berlin: Springer-Verlag, 1972.

Friedman, E. "Spheres in Cubes." http://www.stetson.edu/~efriedma/sphincub/.

Gardner, M. "Packing Spheres." Ch. 7 in Martin Gardner's New Mathematical Diversions from Scientific American. New York: Simon and Schuster, pp. 82-90, 1966.

Gardner, M. "Packing Spheres." Ch. 10 in The Colossal Book of Mathematics: Classic Puzzles, Paradoxes, and Problems. New York: W. W. Norton, pp. 128-136, 2001.

Gauss, C. F. "Besprechung des Buchs von L. A. Seeber: Intersuchungen über die Eigenschaften der positiven ternären quadratischen Formen usw." Göttingsche Gelehrte Anzeigen (1831, July 9) 2, 188-196, 1876.

Gensane, T. "Dense Packings of Equal Spheres in a Cube." Electronic J. Combinatorics 11, No. 1, R33, 2004. http://www.combinatorics.org/Volume_11/PDF/v11i1r33.pdf.

Goldberg, M. "On the Densest Packing of Equal Spheres in a Cube." Math. Mag. 44, 199-208, 1971.

Hales, T. C. "The Sphere Packing Problem." J. Comput. Appl. Math 44, 41-76, 1992.

Hilbert, D. and Cohn-Vossen, S. Geometry and the Imagination. New York: Chelsea, pp. 45-53, 1999.

Jaeger, H. M. and Nagel, S. R. "Physics of Granular States." Science 255, 1524, 1992.

Le Lionnais, F. Les nombres remarquables. Paris: Hermann, p. 31, 1983.

Lindsey, J. H. II. "Sphere Packing in R^3." Math. 33, 137-147, 1986.

Muder, D. J. "Putting the Best Face of a Voronoi Polyhedron." Proc. London Math. Soc. 56, 329-348, 1988.

Rogers, C. A. "The Packing of Equal Spheres." Proc. London Math. Soc. 8, 609-620, 1958.

Rogers, C. A. Packing and Covering. Cambridge, England: Cambridge University Press, 1964.

Schaer, J. "On the Densest Packing of Spheres in a Cube." Can. Math. Bul. 9, 265-270, 1966.

Sigrist, F. "Sphere Packing." Math. Intell. 5, 34-38, 1983.

Sloane, N. J. A. "The Packing of Spheres." Sci. Amer. 250, 116-125, 1984.

Sloane, N. J. A. "The Sphere Packing Problem." Proc. Internat. Congress Math., Vol. 3 (Berlin, 1998). Doc. Math. Extra Volume ICM 1998, 387-396, 1998. http://www.research.att.com/~njas/doc/icm.ps.

Sloane, N. J. A. Sequence A093825 in "The On-Line Encyclopedia of Integer Sequences."

Steinhaus, H. Mathematical Snapshots, 3rd ed. New York: Dover, pp. 202-203, 1999.

Stewart, I. The Problems of Mathematics, 2nd ed. Oxford, England: Oxford University Press, pp. 69-82, 1987.

Thompson, T. M. From Error-Correcting Codes Through Sphere Packings to Simple Groups. Washington, DC: Math. Assoc. Amer., 1984.

Torquato, S.; Truskett, T. M.; and Debenedetti, P. G. "Is Random Close Packing of Spheres Well Defined?" Phys. Lev. Lett. 84, 2064-2067, 2000.

van Dam, E.; den Hertog, D.; Husslage, B.; and Rennen, G. "Maximin Designs (Dimensions: 3)." Mar. 31, 2006. http://www.spacefillingdesigns.nl/.

Weisstein, E. W. "Books about Sphere Packings." http://www.ericweisstein.com/encyclopedias/books/SpherePackings.html.

Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, p. 29, 1986.

Wells, D. The Penguin Dictionary of Curious and Interesting Geometry. London: Penguin, 237-238, 1991.

Zong, C. and Talbot, J. Sphere Packings. New York: Springer-Verlag, 1999.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.