Read More
Date: 23-1-2019
813
Date: 17-1-2019
783
Date: 23-1-2019
1001
|
If , ..., are irreducible polynomials with integer coefficients such that no integer divides , ..., for all integers , then there should exist infinitely many such that , ..., are simultaneously prime.
If Schinzel's hypothesis is true, then it follows that all positive integers can be represented in the form with and prime. In addition, it would follow that there are an infinite number of numbers such that , where is the number of divisors of and is the sum of divisors, since the conjecture implies that there are infinitely many primes for which is prime, for such , and , so is in the sequence (D. Hickerson, pers. comm., Jan. 24, 2006).
Conroy (2001) verified the conjecture to .
REFERENCES:
Conroy, M. M. "A Sequence Related to a Conjecture of Schinzel." J. Integer Sequences 4, No. 01.1.7, 2001. http://www.cs.uwaterloo.ca/journals/JIS/VOL4/CONROY/conroy.html.
Dickson, L. E. "A New Extension of Dirichlet's Theorem on Prime Numbers." Messenger Math. 33, 155-161, 1904.
Ribenboim, P. The New Book of Prime Number Records. New York: Springer-Verlag, 1996.
Schinzel, A. and Sierpiński, W. "Sur certaines hypothèses concernant les nombres premiers. Remarque." Acta Arithm. 4, 185-208, 1958.
Schinzel, A. and Sierpiński, W. Erratum to "Sur certains hypothèses concernant les nombres premiers." Acta Arith. 5, 259, 1959.
|
|
تفوقت في الاختبار على الجميع.. فاكهة "خارقة" في عالم التغذية
|
|
|
|
|
أمين عام أوبك: النفط الخام والغاز الطبيعي "هبة من الله"
|
|
|
|
|
قسم شؤون المعارف ينظم دورة عن آليات عمل الفهارس الفنية للموسوعات والكتب لملاكاته
|
|
|