 
					
					
						Lane-Emden Differential Equation					
				 
				
					
						 المؤلف:  
						Chandrasekhar, S
						 المؤلف:  
						Chandrasekhar, S					
					
						 المصدر:  
						An Introduction to the Study of Stellar Structure. New York: Dover
						 المصدر:  
						An Introduction to the Study of Stellar Structure. New York: Dover					
					
						 الجزء والصفحة:  
						...
						 الجزء والصفحة:  
						...					
					
					
						 22-6-2018
						22-6-2018
					
					
						 2471
						2471					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Lane-Emden Differential Equation

A second-order ordinary differential equation arising in the study of stellar interiors, also called the polytropic differential equations. It is given by
	
		
			|  | (1) | 
	
	
		
			|  | (2) | 
	
(Zwillinger 1997, pp. 124 and 126). It has the boundary conditions
Solutions  for
 for  , 1, 2, 3, and 4 are shown above. The cases
, 1, 2, 3, and 4 are shown above. The cases  , 1, and 5 can be solved analytically (Chandrasekhar 1967, p. 91); the others must be obtained numerically.
, 1, and 5 can be solved analytically (Chandrasekhar 1967, p. 91); the others must be obtained numerically.
For  (
 ( ), the Lane-Emden differential equation is
), the Lane-Emden differential equation is
	
		
			|  | (5) | 
	
(Chandrasekhar 1967, pp. 91-92). Directly solving gives
	
		
			|  | (6) | 
	
	
		
			|  | (7) | 
	
	
		
			|  | (8) | 
	
	
		
			|  | (9) | 
	
	
		
			|  | (10) | 
	
	
		
			|  | (11) | 
	
The boundary condition  then gives
 then gives  and
 and  , so
, so
	
		
			|  | (12) | 
	
and  is parabolic.
 is parabolic.
For  (
 ( ), the differential equation becomes
), the differential equation becomes
	
		
			|  | (13) | 
	
	
		
			|  | (14) | 
	
which is the spherical Bessel differential equation
	
		
			| ![d/(dr)(r^2(dR)/(dr))+[k^2r^2-n(n+1)]R=0](http://mathworld.wolfram.com/images/equations/Lane-EmdenDifferentialEquation/NumberedEquation13.gif) | (15) | 
	
with  and
 and  , so the solution is
, so the solution is
	
		
			|  | (16) | 
	
Applying the boundary condition  gives
 gives
	
		
			|  | (17) | 
	
where  is a spherical Bessel function of the first kind (Chandrasekhar 1967, p. 92).
 is a spherical Bessel function of the first kind (Chandrasekhar 1967, p. 92).
For  , make Emden's transformation
, make Emden's transformation
which reduces the Lane-Emden equation to
	
		
			|  | (20) | 
	
(Chandrasekhar 1967, p. 90). After further manipulation (not reproduced here), the equation becomes
	
		
			|  | (21) | 
	
and then, finally,
	
		
			|  | (22) | 
	
 
REFERENCES:
Chandrasekhar, S. An Introduction to the Study of Stellar Structure. New York: Dover, pp. 84-182, 1967.
Iyanaga, S. and Kawada, Y. (Eds.). Encyclopedic Dictionary of Mathematics. Cambridge, MA: MIT Press, p. 908, 1980.
Seshadri, R. and Na, T. Y. Group Invariance in Engineering Boundary Value Problems. New York: Springer-Verlag, p. 193, 1985.
Zwillinger, D. Handbook of Differential Equations, 3rd ed. Boston, MA: Academic Press, pp. 124 and 126, 1997.
				
				
					
					 الاكثر قراءة في  معادلات تفاضلية
					 الاكثر قراءة في  معادلات تفاضلية  					
					
				 
				
				
					
					 اخر الاخبار
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة