المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية

التجارة والزراعة والصناعة والفنون في بلاد اليمن.
2023-12-14
Haugen’s model
2024-01-02
تفاعل ملح الصوديوم للسكرين في تحضير البيروكسيكام
2024-04-27
التركيب الجيولوجي لكوكب زحل
20-11-2016
التنبيغ Transduction
11-1-2016
الآثار التي خلفها رعمسيس السادس (تل بسطة)
2024-11-27

Irregular Singularity  
  
1158   02:15 مساءً   date: 13-6-2018
Author : Arfken, G
Book or Source : "Singular Points." §8.4 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press
Page and Part : ...


Read More
Date: 22-5-2018 1268
Date: 3-7-2018 1079
Date: 27-12-2018 1414

Irregular Singularity

Consider a second-order ordinary differential equatio

If P(x) and Q(x) remain finite at x=x_0, then x_0 is called an ordinary point. If either P(x) or Q(x) diverges as x->x_0, then x_0 is called a singular point. If P(x) diverges more quickly than 1/(x-x_0), so (x-x_0)P(x) approaches infinityas x->x_0, or Q(x) diverges more quickly than 1/(x-x_0)^2 so that (x-x_0)^2Q(x) goes to infinity as x->x_0, then x_0is called an irregular singularity (or essential singularity).


REFERENCES:

Arfken, G. "Singular Points." §8.4 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 451-453 and 461-463, 1985.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.