تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
David Allan Spence
المؤلف:
G C Wake
المصدر:
Professor David Spence, New Zealand Math. Soc. Newslett. 28
الجزء والصفحة:
...
20-2-2018
559
Born: 3 January 1926 in Auckland, New Zealand
Died: 7 September 2003 in Headington, Oxford, England
David Spence's father was a lawyer. David grew up, attended school, and did his undergraduate work in New Zealand. He attended King's College, Auckland, followed by the University of Auckland. He then moved to England where he undertook research in engineering at Clare College, Cambridge, being awarded his doctorate in 1952.
Spence did not enter the academic world after his doctorate but went to the Royal Aircraft Establishment at Farnborough. Here he began research on boundary layer problems of fluid flow which was of great significance in the design of aircraft wings. He described some of his analysis of the potential flow about a body representing the airfoil plus its boundary layer and viscous wake in the paper Prediction of the characteristics of two dimensional airfoils which appeared in 1954.
He presented his most significant work from this period in the paper The lift coefficient of a thin, jet-flapped wing which appeared in the Proceedings of the Royal Society in 1956. Spence studied a two-dimensional airfoil placed in an inviscid, incompressible, steady fluid flow, in particular a thin jet coming from its trailing edge of the airfoil. Obtaining equations under special conditions, Spence found numerical results for lift, pitching moment, and jet shape, which he compared with experimental results obtained from a wind tunnel. Two further papers in 1958 extended the results of this paper. One was The lift on a thin aerofoil with a jet-augmented flap where he studied an airfoil with deflected flap such that the jet coming from the flap hinge prevents boundary-layer separation on the flap. Results were obtained using an early electronic computer. The second extension appeared in his paper Some simple results for two-dimensional jet-flap aerofoils which was also published in 1958.
In 1964 Spence left the Royal Aircraft Establishment to enter the academic world. He was appointed to the engineering department of the University of Oxford and remained there for around 20 years. He extended considerably the range of topics to which he applied his mathematical techniques. One 1977 paper The Boussinesq problem for a material with different moduli in tension and compression is summarised in his own words as follows:-
We consider the infinitesimal displacements in the problem of point loading of an unbounded elastic solid which has different behaviour in tension and compression, using constitutive relations that depend on the signs of the principal strains. By similarity considerations, the displacements are expressed in terms of the solution of a pair of nonlinear ordinary differential equations satisfying two-point boundary conditions. These are found by an iterative technique giving numerical results for typical values of the elastic constants over a range of values of the ratio of E (compressive) to E (tensile) lying between0.5 and 2.
Spence applied his results on compression of solids to obtain a better understanding of geophysical problems. In particular he studied magma flow beneath the Earth's surface to obtain a better understanding of volcanic eruptions when magma flows through fractures in the Earth's surface.
He spent the final years of his career as Professor of Mathematics at Imperial College, London. He had special responsibilities in this post for teaching mathematics to engineering students, an aspect for which he was exceptionally well qualified. He continued to produce papers of outstanding quality. For example A class of biharmonic end-strip problems arising in elasticity and Stokes flow appeared in 1983. Spence's summary of the reslts of this paper begins:-
We consider boundary value problems for the biharmonic equation in the open rectangle x > 0, -1 < y < 1, with homogeneous boundary conditions on the free edges y = ±1, and data on the end x = 0 of a type arising both in elasticity and in Stokes flow of a viscous fluid, in which either two stresses or two displacements are prescribed. For such 'noncanonical' data, coefficients in the eigenfunction expansion can be found only from the solution of infinite sets of linear equations, for which a variety of methods of formulation have been proposed.
Other papers from this period include Frictional contact with transverse shear (1986) and The line contact problem of elastohydrodynamic lubrication (1989). He applied his theory to study the effects of injecting water into an oil well to allow greater recovery of oil. The understanding obtained from such studies allows more oil to be recovered from North Sea wells than might otherwise be possible.
Spence retired from his chair at Imperial College, London, in 1991 when he reached the age of 65. He continued his mathematical work but this became increasingly difficult due to a long illness. He had a number of interests outside mathematics, particularly in political history and law. He was described in an obituary [1] as:-
... a quiet, thoughtful and kindly man with a great love for and pride in his family. In his younger days he was keen on golf and on strenuous walking in mountainous regions.
- Obituary in The Times [See THIS LINK]
Articles:
- G C Wake, Professor David Spence, New Zealand Math. Soc. Newslett. 28 (1983), 15.
الاكثر قراءة في 1925to1929
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
