تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Linear Equations
المؤلف: المرجع الالكتروني للمعلوماتيه
المصدر: www.almerja.com
الجزء والصفحة: ...
6-3-2017
2000
Quick Definition: An equation that forms a straight line on a graph.
More precisely, a linear equation is one that is dependent only on constants and a variable raised to the first power. For example, y=6x+2 is linear because it has no squares, cubes, square roots, sines, etc. Linear equations can always be manipulated to take this form:
You won't always see linear equations written exactly like that, but keep in mind that we can manipulate equations to put them in a particular form if necessary.
Linear equations are often written with more than one variable, often x and y. Such equations will have many possible combinations of x and y that work. When those points (known as coordinates) are plotted on an x-y axis, they will form a straight line. Let's take a look at this graphically below. The two equations drawn are linear. Note that one is in the form y=3 (it is dependent on just a constant, 3), and the other equation is y=0.75x - 0.5 (a linear term and a constant).
How do I know if an equation is linear?
Does the equation (or function) include any squared terms? How about other terms with exponents other than 1 (or, technically, zero)? If the function has no terms with an order higher than 1 (a fancy way of saying exponent) then it is linear!
What if it has a log or trig function, etc.?
These are not linear terms. Simply, they aren't constants (regular numbers) or variables with an exponent of 1, so the function isn't linear. If we could write sin(x) or log(x) as something linear like "2x+3" then we'd do that instead of using complicated non-linear functions like sine and log! Of course, if you haven't covered these concepts in your class yet, don't even worry about it.
So, how do I solve a linear equation?
Some linear equations are really, really easy to solve. What about this one:
It's a linear equation, and it's already solved for y! That's easy... there's nothing to do. But this rather trivial example does show us that linear equations can be quite simple, and also shows us our goal: rewrite the equation so that the variable we are solving for is one one side, and everything else is on the other side.
Taking it a tiny step forward:
With this equation we simply have to subtract 2 from both sides in order to put our equation in a solved form, with y=2. Solving any linear equation is just a matter of performing operations on both sides of the equals sign until the equation is in the form you want (usually solved for a single variable, like X or Y). The steps are shown in detail below:
What about more complicated equations?
Fortunately with linear equations the steps are always relatively straightforward. There's no one way to do it, and with time you'll be able to think through a linear equation without really having to write down every step. Try the following approach to solve the equations and see if it works for you:
Let's look at some examples of solving linear equations.
One thing to keep in mind is that you can't always solve the equation to something definite like y=5. It's perfectly ok to have y=x+5, and it just means that y depends on x. In fact, there's exactly one value of y for each value of x, all of which make points that lie on a straight line (like I showed back at the beginning).
Example 1: Solve for y:
If you substitute 2 for y back in the original problem, you get 9=9, so it's right!
Example 2: Solve for y:
Example 3: Solve for y: