تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Imaginary Numbers
المؤلف: المرجع الالكتروني للمعلوماتيه
المصدر: www.almerja.com
الجزء والصفحة: ...
13-3-2017
890
What is the square root of a negative number? Did you know that no real number multiplied by itself will ever produce a negative number? Finding the square root of 4 is simple enough: either 2 or -2 multiplied by itself gives 4. However, there is no simple answer for the square root of -4.
So, what do you do when a discriminant is negative and you have to take its square root? This is where imaginary numbers come into play. Essentially, mathematicians have decided that the square root of -1 should be represented by the letter i. So, i = sqrt(-1), or you can write it this way: -1 1/2 or you can simply say: i 2 = -1.
What you should know about the number i:
1) i is not a variable.
2) i is not found on the real number line.
3) i is not a real number.
Sample A:
Simplify (4i) 2
Steps:
1) Multiply 4i times 4i. This will produce 16(i 2 ).
2) Multiply 16 times -1 because i2 equals -1.
The answer is: -16.
Sample B:
Simplify sqrt(-80).
Steps:
1) Multiply two radicands keeping in mind that one of them has to be a perfect square. How about sqrt(16) times sqrt(5)? Yes, this will produce sqrt(80). Also, don't forget to multiply sqrt(-1) times sqrt(16) times sqrt(5).
2) Simplify square roots where needed. For example, sqrt(16) becomes simply 4 and sqrt-1 simply becomes the number i.
3) Put it all together this way: 4i(sqrt(5)) or 4i times the square root of 5.
NOTE: You cannot reduce sqrt5 anymore because it is already in lowest terms.