1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : الجبر : مواضيع عامة في الجبر :

Greatest Common Factor

المؤلف:  المرجع الالكتروني للمعلوماتيه

المصدر:  www.almerja.com

الجزء والصفحة:  ...

6-3-2017

1121

The greatest common factor is, by definition, the largest number that factors evenly into two or more larger numbers. For instance, the greatest common factor (GCF) of 15 and 25 is 5, because 5 is the largest number that goes into 15 and 25 evenly.

To find the GCF of small numbers, like 12 or 16, it might be easier to just list all the factors and find the largest common factor, but for big numbers like 490 and 819, you need a faster method. The first step is to complete a prime factorization of each number. Find any number (2 will work) that divides 490 evenly, and you will get 245. Keep dividing and keeping track of the numbers in a format like this:

Therefore, 7 * 7 * 5 * 2 = 490. Those four numbers circled in red are all prime and cannot be factored anymore, so you must be done. That is the prime factorization of 490. Now you can do the same with your other number, 819.

The prime factors of 819 are 3,3,7, and 13. Now we should compare the prime factors of both numbers:

819 = 3 * 3 * 7 * 13
490 = 2 * 5 * 7 * 7

What we want to do is take everything that is shared by both numbers. Only one factor is common, and that is 7, so we know that 7 is the GCF of 490 and 819. Let's try another pair of numbers, 1012 and 10580. Prime factorization of the numbers reveals this situation:

1012 = 2 * 2 * 11 * 23
10580 = 2 * 2 * 5 * 23 * 23

Each number has two 2's and one 23 in common, so we will use those numbers. We cannot use the other 23 because 1012 only has one, and we cannot use 11 because 10580 doesn't have any. Write down the numbers in common and multiply them to get the GCF:

2 * 2 * 23 = 92

 

EN

تصفح الموقع بالشكل العمودي