تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Factoring Numbers
المؤلف: المرجع الالكتروني للمعلوماتيه
المصدر: www.almerja.com
الجزء والصفحة: ...
4-3-2017
1258
The ability to factor a number is an important skill to learn. You will be required to come up with all the factors of a number quickly when doing more complicated algebra later on in school. This lesson will get you up to speed on the basic ideas of factoring.
Definition
A factor of a number is one that divides into the number evenly. That is, 6 is a factor of 12 because 12 divided by 6 is exactly 2. The number 5 is not a factor of 12, because 12 divided by 5 is 2.4.
It is easy to find all the factors of a small number, like 3. The only numbers that divide evenly into 3 are 1 and 3. Finding the factors of an enormous number, like 64,448, can be very hard, because there could be several hundred factors. You is more likely you will be asked to find factors of numbers somewhere in between those extremes, like 42, for example. The first step is to recognize that 42 is an even number, and is divisible by 2. That operation reveals another factor, 21.
Since 2 goes evenly into 42, the result must also be true. 21 goes into 42 twice. Now we have four factors: 42, 21, 2, and 1, since the number and 1 are always factors of any number. We know that there aren't any more numbers that divide into the 2, but 21 is 7 x 3. That means that 7 and 3 are also factors.
After dividing 42 by 7 and 3, we discovered the last two factors, 6 and 14. We now have a total of 8 factors: 42, 21, 14, 7, 6, 3, 2, 1. No combinations of those numbers will give us any more factors, so we must be finished factoring 42.
That number was easy enough to factor because it was even, so we could start with 2. What about a more difficult number, like 81? The best idea is to try a few small odd numbers, like 3,5 and 7, to see if any of them divide evenly. It is also a good idea to check the number to see if it is prime, in which case it would only have 2 factors: itself and 1.
Sure enough, 81 is divisible by 3, giving 27 as an answer. That means that atleast 1, 3, 27, and 81 are factors of 81. We know that 27 is 9 x 3, so 9 is an additional factor. No other numbers work, so 1, 3, 9, 27, and 81 are the only 5 factors of 81.